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ABSTRACT 

 

The development of a System-of-Systems (SoS) remains a highly challenging endeavor due to the 

complex interdependencies between systems that often times exhibit managerial and operational 

independence, yet, must work cohesively to achieve an overarching set of capabilities. Current 

guidelines set forth by the Department of Defense SoS System Engineering guide presents SoS SE as a 

set of seven core elements which are connected to the 16 technical and management processes in the 

Defense Acquisition Guidebook (DAG). This guide, however, and subsequent frameworks (such as the 

Wave Model), are meant to raise awareness of the key issues and products involved. A need exists to 

create and mature decision support tools to support the decision making process of evolving SoS 

architectures; this includes the need for properly assessing the impact that potential disruptions can 

have, and the analysis of alternatives of SoS constructs. 

 

Trades between capability and risk are essential decisions that must be addressed for SoS capability 

planning. Existing tools for such trades, where they exist, can be ineffective and non-intuitive when size 

and/or interdependency complexity is high. These features create a tradeoff space between 

development risk and capability potential of a system.  The objective of RT-36 was to explore analytical 

methods to quantify the impact of system interdependencies in the context of SoS capability 

development and use this to guide system engineering activity for SoS. A variety of approaches are 

investigated to provide a means to conduct analysis of alternatives while navigating the decision space 

that simultaneously considers the potential positive impacts of interdependencies (e.g., SoS capability) 

as well as the negative impacts (e.g. consequences of disruption in development) 

 

The research in RT-36 centered on seven analytical methods that have been adapted to support SoS 

architecting decisions and systems engineering of constituent systems. Since no single method or tool 

can fulfill all technical and managerial needs, the exploration of  methods in this report use generic  

forms of problems faced by practitioners, focusing on inputs, outputs, and limitations in the context of 

support for the “Wave” model for SoS architectural evolutions. The methods explored in this report 

show great promise in term of supporting practitioners in performing relevant analysis and evolutions of 

SoS architectures; these methods will be further matured and enhanced in follow-up research work 

under RT-44. 
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1 SUMMARY 

 

Effective management of SoS architectures begins with careful consideration of the dynamics of SoS 

artifacts; however, the complex interdependencies of such design trade spaces across developmental 

and operational aspects of SoS makes effective management an elusive notion due to the lack of 

effective tools to navigate such complex trade spaces. Furthermore, the need for methods to balance 

risk and capability tradeoffs when assessing alternatives in decision making for SoS architectures has 

been a primary motivation for the research documented in this report this has resulted in the 

development of a suite of methods that address various issues faced in supporting SoS artifacts within 

the context of the Wave Model. The methods covered in this report include the following: 

 

 Robustness using Stand-In Redundancy 

The method employed here employs robust strategies in evaluating and constructing SoS 

networks of assets that have the ability to mitigate  

 

 Interdependency and Resilience Analysis using Bayesian Networks 

This method utilizes statistical/distribution information from data driven SoS networks to 

address issues of network capability resilience and analysis of interdependencies in 

developmental networks. 

 

 Interdependency analysis using Markov Networks 

This method employs Markov network chains to analyze the impact of interdependencies on 

development of interconnected networks of systems. 

 

 Functional (Developmental) Dependency Network Analysis (F(D)DNA) 

This method extends the Markov network approach to analysis of both functional and 

developmental dependencies between constituent systems in a SoS architecture. 

 

 Architectural development using Colored Petri Nets (CPN) 

This method employs a discrete event simulation technique to analyze event based 

architectures; discrete event networks are modeled as a combination of tokens, transitions and 

rule sets. 

 

 SoS Architecture Decision Analysis using Robust Portfolio Optimization 

This method provides a decision support framework for the identification of ‘portfolios’ of 

interdependent systems that fulfill requirements and capabilities. 

 

The report is organized as follows: Section (2) of the report is the introduction and covers the 

background motivation behind the research in supporting SoS architectural evolution from the 

perspective of a SoS SE practitioner. Section (3) details the suite of researched analytic methods that are 
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adapted to support SoS architectural artifacts, as listed above. The description of each method includes 

background literature review, details of the methodology, adaptation to SoS problems and 

demonstration through application on a simplified case problem. These problems cover both generic 

nodal collection of systems and a Littoral Combat Ship (LCS) inspired case study. 

 

2 INTRODUCTION  

 

2.1 background/motivation The Department of Defense (DoD) has recognized the need for new 

principles in managing the development of SoS architectures. This has prompted the development and 

release of the SoS SE guidebook, which presents SoS SE as seven core elements that are mapped to the 

original 16 technical management processes within the Defense Acquisition Guidebook (DAG) (Defense, 

Defense Acquisition Guidebook, 2008). The guidebook serves as a concerted effort in understanding 

how SoS architectures work and address a holistic view of what frameworks are necessary in tackling 

SoS SE challenges. However, the guidance provided in the document is still in need of more 

comprehensive guidelines and complementary technical tools to enable effective SoS SE management 

and support.  

 

More recent developments have seen extension and improvements in decision making , 

interrelationships and artifacts from a higher-level perspective, by altering the  Trapeze Model 

perspective of viewing  SoSs. A new paradigm of the ‘Wave Model’ as proposed by (Dahmann, Rebovich, 

& Lowry, May 2011) essentially unwinds the trapeze model construction in an effort to improve 

transparency and efficiency in SoS architectural issues. Figure 1 shows the “wave” model representation 

of SoS decision-making artifacts, as developed by (Dahmann, Rebovich, & Lowry, May 2011). 

 

 

Figure 1: Wave model 

Each step of decision epochs in the Wave Model, denoted by individually colored boxes in the diagram, 

bear specific actions that support different stages of the SoS architectural evolution. Guidance on 
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information that supports each of these steps is as detailed in literature. The result is an establishment 

of a coherent flow of information throughout the SoS update cycle.  

2.1 PROBLEM STATEMENT 

 
While the Wave Model establishes a concise framework on addressing SoS architectural evolutions, 

there is nevertheless a pressing need for adequate tools to support each stage of the decision epochs, 

and to navigate the complexities associated with decision making in such environments. Trades between 

capability and risk are essential during analysis of alternatives for SoS capability planning, namely in the 

evaluation of alternative architectures. Existing tools for such trades, where they exist, can be 

ineffective and non-intuitive when size and/or interdependency complexity is high. These features of 

interdependencies create a tradeoff space between development risks, cost and capability performance 

of a SoS, for which new tools/methods will need to be developed. 

 

2.1.2 RESEARCH STRATEGY & RELATION TO SERC CORE COMPETENCIES 

 

The research relates directly to the SERC’s core competency number 2 with its motivation from the 

challenges of systems engineering and acquisition when a system-of-systems capability is the primary 

objective. In these settings, systems must be able to interoperate and therefore have dependencies 

during the analysis of alternatives and concept development phases. It is well known that 

interoperability between systems may be necessary for SoS capabilities, but the underlying 

interdependencies in system development, if not addressed, conceal the impact of disruptions that 

cascade through the interdependence network. The tools to be derived from the methods research are 

in concert with several need areas identified in the “Trapeze Model” developed and described in the SoS 

SE Guidebook. In particular, the “Understanding Systems” element that seeks information about 

systems which impact SoS, both technical and programmatic, is addressed. Also, our approach for 

uncovering emergent outcomes in networked systems (resulting from interdependencies and topology 

features) is clearly congruent with the SERC’s second Research Thrust in Systems Science and 

Complexity and also is congruent with the “Assess Performance” element in the “Wave” construct which 

seeks to identify potential undesirable emergent behaviors of the SoS and single system dependencies 

essential to SoS capabilities.  

 

2.2 RESEARCH OBJECTIVES  

The objective of our effort is to develop and test methods that quantify the impact of system 

interdependencies and other architecture features in the context of SoS capability development, in 

support of the Wave Model. The products of the research can guide system engineering and 

architecture design activities. A variety of methods are investigated to conduct analysis of alternatives 
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while navigating the decision space that simultaneously considers the potential positive impacts of 

interdependencies (e.g., SoS capability) and negative impacts (e.g. consequences of disruption). 

 

2.1 METHODS OF APPROACH 

 

Our research is focused on a multi-pronged approach that utilizes a suite of tools; these computational 

tools leverage currently available methods, tailored specifically towards addressing the mixed nature of 

potential technical dimensions that practitioners may face in performing SoS evolutionary actions.  The 

research conducted in this phase evaluates the applicability and ‘value added’ of each method in 

addressing potential SoS concerns. The methods and individual descriptions are as listed below: 

 

 Robustness using Stand-In Redundancy 

The method employed here employs robust strategies in evaluating and constructing SoS 

networks of assets that have the ability to mitigate  

 

 Interdependency and Resilience Analysis using Bayesian Networks 

This method utilizes statistical/distribution information from data driven SoS networks to 

address issues of network capability resilience and analysis of interdependencies in 

developmental networks. 

 

 Interdependency analysis using Markov Networks 

This method employs Markov network chains to analyze the impact of interdependencies on 

development of interconnected networks of systems. 

 

 Functional (Developmental) Dependency Network Analysis (F(D)DNA) 

This method extends the Markov network approach to analysis of both functional and 

developmental dependencies between constituent systems in a SoS architecture. 

 

 Architectural development using Colored Petri Nets (CPN) 

This method employs a discrete event simulation technique to analyze event based 

architectures; discrete event networks are modeled as a combination of tokens, transitions and 

rule sets. 

 

 SoS Architecture Decision Analysis using Robust Portfolio Optimization 

This method provides a decision support framework for the identification of ‘portfolios’ of 

interdependent systems that fulfill requirements and capabilities. 

 

The methods and tools developed in this research, support: “architecting, engineering and evolving SoS 

and for designing and engineering systems which effectively support user needs as part of a larger SoS.” 

The first potential benefits lie in increasing the ability of system engineers to manage risk in the 
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presence of system interdependency complexities during the architecting of SoS capabilities. The 

distinctive traits of operational and managerial independence are key to making the collaboration work. 

The structure of the network of constituent systems, however, can contribute both negatively and 

positively to the successful achievement of SoS capabilities and developmental success. Risk in individual 

systems can explain the local impacts but do not capture the impact that disruptions to individual 

systems have at the enterprise level, where multiple systems – explicitly or implicitly interdependent – 

collaborate to achieve various capabilities.  

 

In principle, the tools address all four types of SoS (directed, acknowledged, collaborative, virtual) since 

all types are sensitive to the cascading effects of disruption among interdependent systems. However, 

the acknowledged and collaborative are of primary interest in tailoring the methods because a) these 

include many DoD capability areas, b) these types exhibit managerial independence of systems and thus 

the likelihood of disruption propagation is high (due to potentially low awareness of dependencies). 

Further, one could argue that even directed SoS instances in DoD, if they are large enough, would 

benefit from greater awareness of cascading impacts of disruptions. 

 

Insight provided from technical interrogation of decision engineering spaces and evolving the SoS relates 

back to the key activities that need to reside in the “Wave model” and the continual iteration of such 

activities in frequent epochs in SoS evolution and upgrade. Disruptions on the development of one 

system in a SoS can have unforeseen consequences on the development of others. Our research on the 

development and acquisition of SoS targets, within the context of the Wave Model addresses 

complexities stemming from system development risk, the interdependencies among systems, and the 

span-of-control of the systems or system-of-systems managers and engineers. The goal is to provide the 

necessary tools in making informed decisions on evaluating architecture alternatives, assessing risks and 

ultimately navigating the trades-offs between performance, cost and developmental risk. 

 

3 ANALYTIC METHODS 

 

3.1 SOS RESILIENCE THROUGH STAND-IN REDUNDANCY 

 

Resilience is the ability of a system or organization to react to and recover from disturbances with 

minimal effect on its dynamic stability (E. Hollnagel, Hampshire) . While the resilience of system-of 

systems (SoSs) depends on the reliability of their constituent systems, traditional reliability approaches 

cannot adequately quantify their resilience. Given the heterogeneity and often wide geographic 

distribution of SoS constituent systems, inclusion of backup redundant systems for a SoS is usually 

impractical and costly. In this work the impact of compensating for a loss of performance in one 

constituent system by re-tasking the remaining systems is quantitatively assessed. This is termed “stand-

in redundancy”, and it provides a method to determine feasible alternative SoS configurations based on 

performance level recovery and cost of implementation.  
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3.1.1 INTRODUCTION 

Traditional systems engineering practices try to anticipate and resist disruptions through classical 

reliability methods, such as inclusion of redundancy at the component level and use of preventive 

maintenance at the system level. Reliability analysis techniques, such as fault trees and event trees, are 

used to determine the level and types of redundancy to be included in the system design. Similar 

methods are used to develop maintenance plans to reduce the likelihood of failures at the system level. 

However, these approaches do not adequately satisfy the resilience needs of a SoS. Given the 

heterogeneity and, often wide geographic distribution, of the constituent systems, redundant systems in 

a SoS are impractical and costly. Additionally, high levels of interdependency between the systems imply 

increased risks of failures cascading throughout the SoS. These hurdles offer the opportunity to improve 

the resilience of the overarching system through unconventional means. This view echoes that of 

researchers who raise the need for a different perspective of resilience in the context of SoSs (Neches & 

Madni, 2012), (Sheard & Mostashari, 2008). A recent paper succinctly sums up the need for greater 

emphasis on resilient systems by stating that “systems should be made resilient, rather than merely 

reliable” as they “need to be able to recover from unexpected perturbations, disruptions, and 

degradations of the operational environment” (Madni & Jackson, 2009).  

 

Here, a way to compensate for a loss of performance in one constituent system by re-tasking the 

remaining systems is studied. Specifically, as one entity, or node in a SoS, experiences degraded 

performance or a failure mode, other entities can alter their operations to compensate for this loss. This 

is called “stand-in redundancy, and it raises several interesting questions, such as: (1) given the failure of 

a specific system, what is the best configuration to compensate for the loss?; (2) what level of 

performance can be recovered with the new configuration?; and (3) what is the upstream effect of 

stand-in redundancy on development costs and risks?  

 

To answer these questions, two concepts are developed: (1) reactive resilience, and (2) proactive 

resilience. Reactive resilience deals with performance recovery after a failure has occurred. In this case, 

for a specific capability, the reduction in overall SoS performance given various nodal failures is studied, 

and then the level of performance that can be recovered by reconfiguring the rest of the SoS is 

determined. Next, this idea is expanded to track the impact of gradual degradation of nodes. As the 

nodes degrade over time, the corresponding reduction in SoS performance could result in a situation 

where a different configuration might perform better than the current one. This implies that one might 

proactively transition the SoS to a different configuration before actual failure of the node. This is 

termed proactive resilience, as this transition to a new configuration before nodal failure occurs 

improves the robustness of the overall SoS. Figure 2 summarizes the above discussion and illustrates the 

different ways resilience in a SoS can be achieved. Failures can be addressed after they occur, through 

repair; or they can be anticipated and addressed before they occur, through preventive maintenance. 

Typically, exogenous methods are required to provide these services. In this work, the emphasis is on 

designing systems with the inherent ability to react to failures, without causing any downtime for either 
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maintenance and/or repair (as highlighted by the shaded region of the figure). This concept can be used 

to study various SoS architectures and evaluate their inherent ability to resist failures, thus in effect 

providing information for decision-makers to help identify “optimally” resilient SoS structures. 

Additionally, consideration of these resilience improvement techniques enables designers to better 

target risk resolution resources. 

 

 

Figure 2. Classification of SoS resilience based on when and how failures are addressed 

3.1.2 ANALYTIC FRAMEWORK 

 

Consider a system-of-systems that consists of n systems. Typical representations of a SoS involve 

networked combinations of the constituent systems that ultimately provide SoS-level capabilities, as 

shown in Figure 3 (a). In this work, a SoS is viewed as a hierarchical structure of multi-system capabilities 

and single-system functions, as shown in Figure 3 (b). At the highest level, the SoS is essentially a 

collection of the capabilities that it is designed to provide. Subsequently, each capability emerges from a 

collection of system-level functions. At the lowest level, the functions are performed by the individual 

systems. For example, geosynchronous satellites can image large swathes of area for extended periods 

of time, and weapon-fitted UAVs can be used to strike targets in hostile environments. Consideration of 

these functions rather than the individual systems as the base level of SoS capabilities enables the 

resilience analysis of the larger system. As mentioned previously, the traditional practice of 

incorporating redundancy in complex engineered systems may not fit well with respect to evolving SoSs. 

Thus, this view of recapturing lost or deteriorating functions plays a key role in improving the resilience 

of SoSs. In the above example, if surveillance is a key requirement of the mission and if the satellite fails, 

then with appropriate imaging capabilities, the UAV can be re-tasked to perform surveillance functions 

and to network with systems that were originally linked to the satellite. At the middle level, groups of 

functions work together to provide a higher-level capability ( ). For example, the satellite could 

collaborate with a reconnaissance UAV to not only provide surveillance of a large area but also to 

provide high-definition imaging capabilities for target identification.  
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Figure 3. (a) Physical (Han, Marais, & DeLaurentis, 2012) and (b) functional representation of system-of-

systems 

Performance and reliability are two important metrics with respect to any operational system. Here, 

these two measures are considered at the capability level and are referred to as the Level of 

Performance (   ) and Level of Reliability (   ) respectively. Determination of the level of 

performance of SoS capabilities is challenging when compared to calculating these metrics for simpler 

systems. The level of performance achieved by a particular system function can be expressed by a direct 

measure of how well it performs its task. For instance, a direct measure of performance might be the 

area, say 1000 sq. mi., that a satellite can image with a given level of resolution. In contrast, 

determination of the level of performance for a particular capability is context and SoS dependent. 

Computing this metric relies on a number of factors such as the architecture of the constituent systems, 

the availability of these systems, the performance capabilities of each system, and the functions 

achievable by each system.  

 

The level of reliability provided by a capability is relatively simpler to determine. There are well-

established methods that help determine the reliability of systems (Rausand & Hoyland, 2004). Using 

these traditional methods and tabulated failure rate information, the reliability of a system (     ), and 

by extension the reliability of the function it provides, at any time after it has been deployed can be 

computed. For this work, we define the level of reliability (   ) of a capability as the probability that all 

the nc constituent systems contributing to that particular capability are operational at a particular time.  

 

Figure 4 provides a graphical illustration of SoS operations using the metrics of Level of Performance 

(LoP) and Level of Reliability (LoR) described above. The desirable region of operation is in the top right 

of the graph, that is, the high-performance, high-reliability portion (as indicated by the blue circle). After 

the initial deployment, the systems gradually degrade with time, and the SoS region of operation moves 

to the left of the graph. In some cases, this degradation can result in a simultaneous reduction in 

performance levels as well as reliability (not shown in figure). If a system fails, the immediate loss in its 

functionality leads to a decrease in the overall performance level of the SoS (as shown by the red circle). 

Given the inherent characteristics of SoSs, a single system loss typically does not lead to a complete 
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failure of the larger SoS and hence, the overall LoP does not fall to zero. However, incorporating a 

certain level of stand-in redundancy will allow the SoS to minimize this performance loss without relying 

on external agents to either maintain or replace the failed system. In the event of a system failure, by 

allowing multiple systems in the SoS to perform the same functions, the remaining systems in the SoS 

can be re-tasked to perform the lost functions, even if to a lesser degree of performance. This is 

represented by a sequence of green circles, indicating that different levels of performance can be 

regained depending on the functional reconfigurability of the SoS 

 

The framework to improve SoS resilience using stand-in redundancy is based on a combinatorial 

optimization approach. This method aims to choose the SoS configuration that minimizes the 

operational cost of the SoS, while achieving a certain level of capability performance, as well as a 

threshold level of reliability. For a SoS with m capabilities, the optimization formulation thus becomes: 

 

Minimize: 

                    

 

Subject to: 

         
  

         
  

 

 

Figure 4. Notional LoP-LoR graph showing impact of stand-in redundancy on SoS performance 

The SoS cost depends on a variety of factors and is highly context dependent. For this work, SoS 

operations is divided into three broad situations: 
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 Fully functional state: The SoS is in its original configuration with no system failures. The SoS cost 

depends on the number of systems contributing to the overall SoS capabilities as well as the cost of 

operating each system. 

 System loss state: The SoS has suffered either single or multiple system failures and is now operating 

at a much lower level of performance. Here, the SoS cost depends on the operating costs of the 

remaining systems as well as costs that may be incurred in repairing and/or replacing the failed 

system.  

 Re-tasked state: The remaining systems are re-tasked to recover some of the lost functionality after 

a system failure. In this situation, the SoS cost depends on the operating costs of the remaining 

systems, the acquisition costs to include additional features that enable this functional redundancy, 

and the marginal costs to re-configure the SoS so that systems can take on their new tasks 

 

The constraints force the optimal solution to meet the target values of performance and reliability for 

each capability, defined by the decision-maker. Here, the target values are defined under two broad 

categories:  

 Desired target values: These values are used to determine the region of operation (in the LoP-LoR 

graph) of the original, fully functional SoS. They represent the level of performance and reliability 

the SoS is expected to satisfy. For example, for a fully functional and newly deployed SoS, the 

systems can be chosen to provide relatively high target values for each capability. 

 Acceptable target values: These values are used to determine the region of operation (in the LoP-

LoR graph) of the re-tasked SoS. They represent the minimum acceptable level of performance that 

the remaining systems must provide. As these values are varied, the costs to achieve the 

corresponding value of stand-in redundancy, vary accordingly. 

3.1.3 APPLICATION: AN ILLUSTRATIVE EXAMPLE 

 

Consider the need for a SoS that provides the ability to detect and eliminate targets in hostile 

environments as well as provides large-scale surveillance in both hostile and non-hostile situations. The 

SoS consists of five systems: a geosynchronous satellite, three UAVs, and a ground station (see Figure 5). 

UAV-1 is primarily a surveillance drone with no weapons on board. On the other hand, UAV-2 and UAV-3 

are fitted with weapons for target elimination tasks and they carry basic cameras on board to provide 

confirmation of the strikes that have been carried out. Combinations of these system functions yield 

three primary SoS capabilities: (1) surveillance, (2) target identification, and (3) target elimination. Using 

the representation developed in the previous, the SoS-level need is decomposed into capabilities as 

shown in Figure 5. For example, to provide surveillance capabilities, the corresponding systems need to 

be able to image large areas of land with high revisit rates. Figure 6 indicates the functions that each 

system can provide. With this setup, the systems that contribute to the SoS capabilities are: 

1. Surveillance provided by the satellite 

2. Target identification provided by a collaboration between the satellite and UAV-1 

3. Target elimination provided by UAV-2 and UAV-3 
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Figure 5. Five-system SoS and corresponding decomposition of capabilities 

The main focus of this work was to assess the impact of incremental modifications to existing SoSs such 

that the overall architecture becomes more resilient to disruptions. Due to challenges related to its 

accessibility, the features on the satellite cannot be changed. In contrast, it is relatively easier to retrofit 

the UAVs with higher performance devices, such as sophisticated imaging and communication 

equipment. Additionally, UAVs may also be reprogrammed for higher revisit rates. The grey arrows in 

Figure 6 indicate the systems whose corresponding features can be changed 

 

 

Figure 6. Systems and the functions they provide 

Next, the Level of Performance (LoP) and Level of Reliability (LoR) associated with each of the three 

capabilities are determined. Both these metrics depend on the needs of the particular SoS, the systems 

available to perform tasks, and the specific functions that can be provided by these systems. In this 

study, the LoP for each capability is assessed as the probability of achieving the particular capability. 

Given that combinations of system-level functions result in the corresponding capability, let     denote 

the set of system functions that contribute to a capability (  ), and let   denote all possible 

combinations of these functions. Assuming binomial states of the systems, that is, each system is either 
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fully functional or completely degraded (failed), the probability of achieving a particular capability is 

determined by applying the law of total probability: 

 

                           

 

       (1) 

 

This means that the probability of achieving a certain capability depends on (a) the conditional 

probability that the capability is achievable given the operational status of the systems and the functions 

they provide, as well as (b) the probability that the systems, and by extension, their functions, are 

operational. The latter probabilities can be determined based on the reliability of the systems at the 

time of interest, as below. On the other hand, calculation of the conditional probability of success is 

relatively more complex since it depends on a variety of factors, such as the actual number of 

operational systems, the strength of the links between the systems, and the availability of sub-systems 

within the systems. The reliabilities of each of these systems can be calculated by applying historical 

failure rate information: 

                                                                     

  

   

 (2) 

 

The optimization to determine the least costly configuration is performed under each of the following 

scenarios: 

1. When nothing fails, that is, the original SoS performs as designed. 

2. When one system fails. 

3. When one or more systems are used to recover functionality after a system has failed. 

 

The results are shown in Figure 7. The horizontal axis denotes the system that has failed; the vertical axis 

represents the LoP for the capability under interest. For each failed system, the first bar indicates the 

original fully functional SoS (the baseline case for further comparisons), the second bar represents the 

impact of the system failure on a particular capability, and the last bar shows the effect of re-tasking the 

remaining systems in the SoS to achieve a minimum acceptable level of performance. For example, 

consider    (surveillance) in Figure 7 (a). For this capability, the satellite alone provides the maximum 

LoP (100%) in the original SoS. If, however, the satellite fails, UAV-1 (with high definition imaging 

capabilities) can provide some surveillance capability (55%). On the other hand, if the systems were 

retrofitted with better imaging devices and reprogrammed for increased revisit rates, a combination of 

UAV-1 and UAV-2 are used to “stand-in” for the satellite, providing a higher LoP (72.5%) for the same 

capability.  

 

In the case of    (target identification) (see Figure 7 (b)) loss of either the satellite or UAV-1 has a 

significant impact on this capability. Additionally, given the reliance of    (target elimination) on the 

ability to accurately track a target, it is vital that drastic performance decrements, especially in urgent 
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hostile situations, do not occur. When the satellite fails, assuming improved imaging capabilities on 

UAV-2, it can collaborate with UAV-1 to provide a marginally higher LoP. On the other hand, if UAV-1 

were to fail, providing better imaging equipment on board UAV-2 (despite its primary role as an attack 

drone), raises the LoP by a significant amount (from 56% to 76%).  

 

The impact of stand-in redundancy on    leads to some interesting observations (see Figure 7 (c)). While 

this capability directly stems from the targeting capabilities of the attack drones, namely UAV-2 and 

UAV-3, it relies heavily on accurate target identification information provided by   . Intuitively, the loss 

of either of the attack UAVs results in performance losses. For example, failure of UAV-2 alone leads to a 

direct loss of half the weapons striking capability of the SoS, and this loss cannot be recovered by any 

other system in the SoS as none of them are equipped to carry and launch weapons. In contrast, failure 

of either the satellite and/or UAV-1 adversely impacts the target identification ability of the SoS, thereby 

hindering its target elimination ability, despite the full functionality of UAVs 2 and 3. This highlights the 

fact that system failures can have significant impacts on capabilities that they are not directly designed 

to satisfy. In such situations, allowing other systems to take over some of the lost functionality helps 

maintain key capabilities at acceptable (as determined by decision-makers or operators) levels. For 

example, if UAV-1 fails in the midst of a raid, a properly equipped UAV-2 can provide target 

identification capability so that UAV-3 can carry out the actual target elimination tasks. Although this 

implies that UAV-2 may not be available to carry its own attack function, depending on the criticality of 

the situation, this marginal loss in firepower may be traded in for improved reconnaissance. As a result, 

it is important to keep in mind the immediate needs of the mission when deciding which configuration 

to transition to. 

 

Cost considerations are highlighted in Figure 7 (a). ∆              is the cost associated with re-tasking 

the remaining system and it depends on: (a) the features that are either modified or added to the 

existing systems (such as, inclusion of high performance cameras in UAV-1 and UAV-2), and (b) the 

operating costs of these systems. This metric is relatively easier to compute than the corresponding cost 

for the failed system, ∆          . Calculating this cost is challenging as it depends on: (a) the operating 

costs of the systems remaining in the SoS after a nodal failure, (b) the costs to replace the failed system 

(for example, deploy a new UAV to replace the failed one), as well as (c) the costs accrued in the 

downtime between system failure and system replacement. 

 

These results indicate that resilience in SoSs can be improved without having to use traditional practices 

of backing up systems. Instead, systems can be designed to contribute to SoS-level capabilities in the 

ideal case, and to “stand-in” for failed functions in the event of a failure. It is also important to note that 

there is a limit to the level of stand-in redundancy that can be incorporated in such systems. Returning 

to the notional example used in this study, re-tasking of some systems is possible because the UAVs can 

be retrofitted with better cameras and imaging mechanisms, and/or can be reprogrammed for higher 

revisit rates. On the other hand, UAVs used for purely surveillance purposes cannot be easily fitted with 

weapons deploying capabilities, nor can the designed imaging capabilities of the satellite be changed. 

This further leads to interesting implications regarding the balance between improving the resilience of 
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an SoS, the costs associated with these improvements, and the need to incorporate features that not 

only improve the resilience but also ensure performance levels as the context of operations of the SoS 

changes with time. This is especially true of large-scale SoSs, such as multi-modal transportation 

networks, that are designed for long lifetimes with modifications and upgrades being incorporated in a 

gradual manner. Stand-in redundancy has the potential to improve the resilience of these systems, 

however, features and technological modifications that bring about stand-in redundancy need to be 

chosen keeping in mind the trade-offs between costs, resilience in face of current and future threats, 

and adaptability of the SoS in an uncertain future.  

 
 

a 
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Figure 7. Impact of system failure and stand-in redundancy oon (a) LoP of Capability 1 (Surveillance), (b) 

LoP of Capability 2 (Target identification), and (c) LoP of Capability 3 (Target elimination) 

3.1.4 CONCLUSION AND FUTURE WORK 

Traditionally, systems have been designed to be resilient through over-design. The emergence of large-

scale system-of-systems (SoSs) has made it relatively hard to incorporate resilience in this manner as the 

system itself evolves with time along with its changing environment. This approach indicates that 

incremental enhancements and/or modifications to existing systems in these SoSs can provide inherent 

resilience. The concept of stand-in redundancy, allows cost-effective re-tasking and reconfiguration of 

SoSs. The resulting resilience capability minimizes performance loss at the SoS level in the event of an 

unanticipated system failure, and thus, enables improved operability of the SoS through uncertain 

futures. The next step of this study includes expanding this static model to a dynamic one with the use 

of stochastic tools to design for resilience under uncertainty. Additionally, the degradation of systems 

over time will be tracked in order to assess whether it might be beneficial to force a transition to a 

different configuration before actual failure of a system (proactive resilience). While the scope of this 

study was limited to single system failures, ongoing research aims at investigating the implications of 

stand-in redundancy in the case of multi-system failures. These concepts, and their resulting upstream 

b 
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effects on development costs and risks, can be used by decision-makers to quantitatively assess the 

impact on resilience of different SoS architectures and their inherent ability to resist failures throughout 

the SoS lifecycle. 

 

3.2 EVALUATING SOS RESILIENCE USING INTERDEPENDENCY ANALYSIS 

Interdependency between SoS systems, while enabling new capability, also means that failures can 

cascade throughout the SoS, creating development delays or additional system failures. Here we 

develop a method based on Bayesian networks to evaluate the resilience of SoS design alternatives to 

failures during operations. When designing SoS, engineers and decision makers are interested in 

identifying patterns of performance in response to failures in component systems. A metric that 

quantifies the capacity of a system to withstand failures can aid in design and operations choices. 

Therefore we define SoS resilience as the level of performance achieved relative to different levels of 

failure. 

 

3.2.1 INTRODUCTION 

An SoS is a collection of distributed independent individual systems that interact with one another to 

achieve an SoS capability requirement that cannot be achieved by individual systems alone (in contrast, 

in a monolithic system, hardware or software components are integrated to form a single entity). Thus 

SoS are characterized both by independence and by interdependency. This interdependency, while 

allowing SoS to achieve their objectives, also means that failures can cascade throughout the SoS, 

creating development delays and/or operational system failures. For example, in the ballistic missile 

defense system, if the integrated sensor systems fail to detect a ballistic missile, then the interceptor 

system will also fail. The Joint Strike Fighter (JSF, or F-35) continues to face schedule and cost overruns, 

partially due to the cascading effects of component systems failing to meet requirements. Therefore, 

assessing SoS resilience to failures during development or operations requires considering cascading 

failures. These properties of independence and interdependence make evaluating SoS designs 

challenging. New approaches are needed to evaluate the risks associated with cascading system failures 

in SoS, both during development and during operation. 

 

The objective in this section is to develop a method to evaluate the resilience of SoS design alternatives 

in the face of failures during operations. Interdependency analysis during development will be 

addressed in the next section (section 3.3). The research objective leads to three questions, which we 

address in this section: 

(1) How can we represent systems for resilience analysis? 

In section 3.2.2, we briefly review the research on hierarchical representations and apply a 

hierarchical network representation to decompose SoS into three levels: capability, requirements, 

and systems.  
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(2) How can we analyze system interdependencies? 

Section 3.2.3 presents our proposed method for performing interdependency analysis of SoS. We 

use a Bayesian Network model to analyze system interdependencies and to address uncertainty. 

This model captures the patterns of how system failures propagate to other dependent systems. 

These patterns allow us not only to identify critical subsystems that are responsible for potential 

system failures, but also to analyze SoS design alternatives. 

(3) How can we measure system resilience? 

In sections 3.2.4 and 3.2.5, we define metrics for assessing resilience. Then, we identify several 

patterns of resilience for different SoS architectures. 

 

3.2.2 HIERARCHICAL ORGANIZATION 

Hierarchical organization, which is a common feature of SoS, often leads to increased complexity when 

designing SoS due to three properties of components involved in SoS: the heterogeneity of constituent 

systems, the distributed nature of these systems, and the uncertainty in exploring the future state of the 

SoS (DeLaurentis & Callaway, Nov. 2004). Rasmussen proposed a means of representing complex 

systems to assist designers in building better interfaces, arguing that if system representation were 

more compatible with the operator’s mental processes, there was greater likelihood of reducing human 

error and improving overall system performance (Goodstein, Andersen, & Olsen, 1988). DeLaurentis and 

Callaway proposed the SoS lexicon to define the explicit relative hierarchical positions of the different 

components according to their function and to categorize their roles in affecting a solution (DeLaurentis 

& Callaway, Nov. 2004). Based on the lexicon developed by DeLaurentis and Callaway, Ayyalasomayajula 

developed a framework for analyzing a SoS capability (Ayyalasomayajula, May 2011). In this research, 

we use the hierarchical representation as the backbone for analyzing systems interdependencies within 

the SoS. 

 

3.2.3 AN INTERDEPENDENCY ANALYSIS OF A SYSTEM-OF-SYSTEMS USING A BAYESIAN NETWORK 

We use a Bayesian Network (BN) to analyze uncertain interdependencies between systems. A BN is a 

probabilistic tool that evaluates networks of systems and graphically represents interactions among 

multiple components (Friedman & Koller, July 2009). It is a directed acyclic graph (DAG) whose nodes 

are the random variables and whose edges directly influence one another. Local probabilities represent 

the nature of the dependence of each variable (node) on its parents. Probability information in a 

Bayesian Network model is defined through these local distributions. A node with no parent node in the 

Bayesian Network model denotes a random variable and its associated probability distribution. A node 

with its parent node(s) can be represented as a conditional probability distribution. 

Here, we use BNs to provide a basic structure for analyzing and visualizing the impact of failures during 

the operation of an SoS.   
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Figure 8. A hierarchical representation of a system-of-systems capability 

Figure 8 shows a hierarchical abstraction of the desired SoS capability, the requirements that must be 

met to achieve this capability, and the physical systems that meet these requirements. In this setting, 

decision makers first define an intended mission and a desired capability in developing the SoS. Then, 

requirements are expressed in terms of capabilities and interdependencies between requirements. 

Systems are interconnected with each other to generate a capability to achieve requirements. This 

interdependency analysis provides the means to estimate the expected capability of the SoS when 

considering propagating effects between interdependent systems.  

We estimate the expected capability by combining the probability of meeting each requirement with the 

capability provided if the requirement is met. Interdependencies between the requirements, and 

between the constituent systems, make this combination non-trivial. Consider the simple (n+1) node 

system shown in . The figure reads as follows: Node R has N parent nodes. Node R represents the 

requirement, and the parent nodes Si represent the systems that meet this requirement. For example, in 

a ballistic missile defense system, one of the requirements may be the detection of a ballistic missile. To 

achieve this requirement, several systems such as unmanned aerial vehicles (UAV), satellites, radars, 

and receivers are needed.  

 

Figure 9. A Bayesian Network representation 

Each node has its own failure rate. We consider here only complete success or complete failure, 

therefore successes and failures can be represented with a binomial distribution or derivatives thereof. 

S1
Sn

R

…



 

Contract Number: H98230-08-D-0171    TO017, RT0036 

Report No. SERC-2012-TR-035 

December 31, 2012 

UNCLASSIFIED 

28 

Let PA(Ri) denote the set of parents of the node Ri, i.e. {S1…Sn}. Applying the law of total probability, the 

probability of achieving a particular requirement, node Ri, is: 

     ( 1) ( 1| ( ) ) ( ( ) )i i i ip R p R PA R p PA R
S

S S  (3) 

where S is the set of all the possible combinations of parent node values. For example, if PA(Ri) includes 

two parent nodes S1 and S2, then S = {(0, 0), (0, 1), (1, 0), (1, 1)}. The conditional probability of success 

depends on the parent nodes and on their relationship to the dependent node. Returning to the 

detection requirement, if we use both a UAV and a satellite to detect an enemy, there are four possible 

combinations of these systems, with different combinations offering different probabilities of success.  

In turn, the SoS capability depends on the combination of requirements. For example, consider an SoS 

with two requirements. The set of total combinations of requirements, R, is R = {(0, 0), (1, 0), (0, 1), (1, 

1)}. When all requirements are met, i.e., R = (1, 1), then the SoS has full capability. However, if some of 

the requirements are not met, i.e., R = (1, 0), (0, 1), or (0, 0), then the SoS capability decreases. The 

probability of achieving the desired capability can be determined using the same approach as above. 

Finally, we combine all three levels to relate the capability to the system performance and reliability. 

 

3.2.4 CONDITIONAL RESILIENCE IN THE SOS CONTEXT 

Reliability is formally defined as the ability of a system to meet a given set of requirements for a given 

period of time in a given set of conditions. More recently, resilience has been proposed as a richer 

metric than reliability. The concept of resilience has been used to analyze systems and solve problems in 

fields such as ecology (Folke, et al., 2004), psychology (Masten, 2009), computer science (Mohammad, 

Hutchison, & Sterbenz, Nov. 2006), material science (Avallone, Baumeister, & Sadegh, 2007), and 

disaster management (Shinozuka & Chang, 2004). While a formal definition of resilience has not been 

agreed on as yet, resilience is generally understood to indicate the capacity of a system to survive, adapt 

and grow in the face of change and uncertainty (Fiksel, 2006).  

Here, we attempt to apply these ideas to SoS. When designing SoS, engineers and decision makers are 

interested in identifying patterns of performance in response to failures in component systems. A metric 

that quantifies the capacity of a system to withstand failures can aid in design and operations choices. 

Therefore we define SoS resilience as the level of performance achieved relative to different levels of 

failure. Since failures in an SoS can occur in many ways, and have many different impacts, we propose 

two ways of measuring and communicating SoS resilience. First, we define the “conditional resilience” 

as the ratio of percentage of performance of SoS in response to failure in a particular system or 

combination of systems: 

 
   

   
   
 %            |i i

i i

CR S of performance of SoS S  (4) 

 

where     represents the particular combination of system failures. 

The conditional resilience in this definition can be thought of as a ‘specific’ performance measure: it tells 

us how much performance is maintained for failure in a given set of systems. 
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3.2.5 TOTAL RESILIENCE IN THE SOS CONTEXT 

The conditional resilience shows the system performance in response to a particular set of system 

failures. The total resilience pattern shows how performance is degraded as the total level of 

component system failures increases. Figure 10 shows a notional resilience pattern. The x-axis denotes 

the percent of systems that have failed and the y-axis denotes the performance (or capability) of the 

entire SoS. The yellow horizontal line represents the minimum acceptable level of performance to meet 

a system requirement. This value depends on the particular SoS being considered. 

 

Figure 10. Performance-Failure diagram 

Consider first a simple SoS where all the constituent systems are identical. Figure 11 shows three 

example resilience patterns with the same acceptable level of performance for this SoS.  

a) For a series system, the loss of one or more systems removes the entire capability. The resilience 

pattern is an impulse function. 

b) For a parallel non-redundant SoS of identical components without network effects, each loss 

reduces the SoS capability in the same way. The resilience pattern is a linear decreasing line. 

c) For a parallel system of identical components with network effects, there are two limit patterns. 

The red concave line shows the resilience pattern when the marginal performance benefit of each 

additional system is larger than the prior system. The convex green line shows the resilience 

pattern when the marginal performance benefit of each additional system is smaller than the 

prior system. A system following the red curve is brittle to small disturbances because small 

failures of a system sharply reduce the performance. However, a system following the green 

curve slowly reduces its performance with respect to failure levels. 

The resilience patterns are influenced by two factors: architecture type and system-level risk of SoS. The 

architecture determines the general shape of the resilience pattern, as illustrated in the simple 

examples discussed earlier. The system-level risk determines the scale of the pattern. For the simple 

series and parallel SoS in the example, the resilience pattern can be derived quite easily. However, for 
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more complex SoS configurations, consisting of series and parallel combinations of heterogeneous 

systems, the pattern is harder to determine. The next section demonstrates an approach to determining 

the pattern for a Littoral Combat Ship system. 

 

(a)                                                                                           (b) 

 

(c) 

Figure 11. Three different resilience patterns 

 

3.2.6 APPLICATION: A CASE STUDY OF LITTORAL COMBAT SHIP SYSTEM 

The LCS is the first of a new family of surface ships for the US Navy. The LCS system is designed to 

counter growing potential threats in the littoral zone such as coastal mines, quiet diesel submarines, and 

terrorists on small, fast, and armed boats (O'Rourke, April 6, 2012), (LCS: The USA's Littoral Combat 

Ships, 2012). One of key features of the LCS system is the open architecture system, which allows for 

modular mission packages intended to facilitate flexible mission systems with quick upgrades and lower 

costs.  
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The LCS system is an SoS because it relies on several independent and interdependent constituents to 

achieve a mission that cannot be achieved by individual entities acting alone. The LCS SoS uses three 

different mission modules: mine warfare (MIW), anti-submarine warfare (ASW), and anti-surface 

warfare (SUW). It includes eight different systems: Armed Helicopter for Surveillance and Attack 

Missions (MH-60R), Helicopter for Airborne Mine Counter-Measure Missions (MH-60S), Unmanned Air 

Vehicle (UAV), Unmanned Surface Vehicle (USV), Remote Mine Hunting System (RMS), Torpedo, Missile, 

and the LCS. Since all systems are strongly dependent on each other to achieve missions, a system 

failure can cause mission failure. Here we demonstrate the application of our approach to compare two 

candidate LCS SoS architectures and to identify critical systems. In this application, we use two sets of 

LCS SoS to achieve missions as shown in Figure 12. For the first architecture, two LCS can communicate 

with each other, and for the second architecture, two LCS cannot communicate with each other. The 

presence (or absence) of the yellow dotted line classifies two different architectures. 

 

Figure 12. Overall architecture of the LCS SoS (LCS: The USA's Littoral Combat Ships, 2012), (Czapiewski, 

2004) 

The mission of the LCS SoS can be decomposed into three requirements: mine, anti-submarine, and anti-

surface warfare. Figure 13 shows the decomposition of the LCS SoS requirements and systems. Each 

requirement is satisfied using several physical systems, and several systems contribute to more than one 

requirement. 
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Figure 13. The decomposition of the LCS system 

The first step in the interdependency analysis is to use a Bayesian network to determine the 

probabilities of successfully meeting the LCS SoS capability. These probabilities are a combination of the 

SoS design and the individual probabilities of meeting the requirements or of the constituent systems 

failing.  

The overall capability of the LCS SoS is defined as the ability to complete a mission consisting of one or 

more of the three requirements. If we assume the requirements are equally important, then the 

probability of meeting the capability is given by: 

 ( 1) ( 1| ( ) ) ( ( ) )p C p C PA C p PA C    
R

R R  (5) 

where R is the set of all the possible combinations of the three requirements. 

The next step is to determine the probabilities of meeting the requirements. To achieve each 

requirement, the LCS SoS performs two steps: (1) gathering information from observational systems to 

detect enemies, and (2) commanding a mission to perform the attack. For example, in the case of anti-

surface warfare, two systems (UAV and MH-60R) gather information about enemy location. Then the 

LCS command center commands MH-60R and the missile-system in the LCS to perform the attack. Thus, 

the success of anti-surface warfare depends on the amount and quality of information on the enemy 

forces. 

For example, if both the UAV and MH-60R are fully functional, then the LCS command center can gather 

100% of enemies’ information: 

 p(LCS=1 | UAV=1, MH-60R=1)=1.0 (6) 

If the MH-60R fails and the missile-system is working with 100% of enemy forces’ information, then the 

LCS SoS can achieve 60% of the requirement 3: 
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 p(Req.=1 | UAV=1, MH-60R=0, LCS=1)=0.6 (7) 

The final step in the interdependency analysis is to determine the system failure characteristics. These 

characteristics can be determined based on operational experience, which can for example be used to 

determine the mean-time-between-failure (MTBF). Alternatively, they can be estimated during design 

using techniques such as fault tree analysis. Here we assume that the failure times are exponentially 

distributed with notional MTBFs. 

We consider here two candidate SoS architectures: (1) two LCS that can communicate with each other; 

and (2) two LCS that cannot communicate with each other. In the case of architecture 2, both command 

centers can use other resources for gathering and attacking enemies. 

 

Figure 14. Conditional resilience values with one system failure in architecture 1 and 2 

We identify the critical systems in each architecture using the conditional resilience metric provided in 

equation (4). The conditional resilience values are the ratio of percentage of overall capability of the LCS 

SoS. Figure 14 shows the conditional resilience values for individual system failures for the two 

architectures. The systems with the lower numbers are the critical systems. LCS1 and LCS2 are the most 

critical systems for both architectures, but in Architecture 1, overall conditional resilience values are less 

than those in Architecture 2. 

Next, using the conditional resilience, we plot the resilience patterns as shown in Figure 15 for the two 

architectures. Since in this case, the constituent systems are heterogeneous, we first order the failures 

from most critical to least critical to determine the worst-case resilience pattern. Doing the converse 

yields the best-case pattern. We also order the systems from highest to lowest failure rate to give the 

expected-case pattern. 

In this case the resilience pattern in the worst-case decreases sharply, but in the best-case it decreases 

gradually. The expected-case is in between the best and worst-cases. The results from Figure 15 support 

our earlier suggestion that the architecture type and system-level risk affect the SoS resilience. Further, 

in the presence of failures, Architecture 2 has higher performance levels than Architecture 1. 
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Figure 15. Resilience patterns with different failure rates of systems and different architectures 

Finally, we determine the expected performance degradation over time by applying equations (5), (6), (7) 

and assuming that the System Probability Density Function (PDF) for each systems, i=1, …, 8 is given by: 

 
  ( ) 1 i t

ip System Failure e  (8) 

where λi is failure rate of system i.  

Requirement conditional PDFs for k=1, …, 3: 

     ( 1) ( 1| ( ) ) ( ( ) )k k k kp R p R PA R p PA R
S

S S  (9) 

where S is the set of all the possible combinations of parent node values. 

The capability conditional PDF is then given by: 

     ( 1) ( 1| ( ) ) ( ( ) )p C p C PA C p PA C
R

R R  (10) 

where R is the set of all the possible combinations of the three requirements. 

The exponential distribution is a function of time; the reliability decreases with time. This makes sense in 

the LCS example. As the exposure time of a system in the LCS set increases, the reliability of the system 

decreases. Figure 16 shows the evolution of two architectures’ performance. The result again 

demonstrates the sensitivity of performance to architecture type. Architecture 2 is more resilient than 

Architecture 1. The source of this increased resilience is the communication connection between the 

two LCS, which allows the two LCS systems to share their resources. 
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Figure 16. Evolution of the LCS SoS performances of both architectures for 600 minutes 

 

3.2.7 CONCLUSION AND FUTURE WORK 

 

In this section, we proposed ways of representing and evaluating SoS resilience, using Bayesian 

networks. We proposed a conditional resilience metric that measures each constituent system’s 

contribution to overall SoS resilience, and a resilience pattern that shows how SoS performance 

degrades as systems fail. We demonstrated our approach using the Littoral Combat Ship example.  

SoS resilience is determined by both the SoS architecture and the constituent system reliability. In the 

proposed example, we determined the two most critical systems using the conditional resilience metric. 

Adding a communications link between these two systems increased the resilience, resulting in higher 

expected performance and slower expected performance degradation as a result of system failure.  

In future work we will further explore the application of the conditional resilience metric and the 

resilience pattern. In particular, while we showed resilience patterns for simple SoS configurations, more 

work is required to evaluate their application in more complex SoS configurations. 

 

 

3.3 DEVELOPMENT INTERDEPENDENCY MODELING FOR SYSTEM-OF-SYSTEMS (SOS) : SOS 

MANAGEMENT STRATEGY 

Event tree methods and Bayesian Networks (BNs) are used in this section to quantify development 

interdependencies between systems and assess cascading development risks. In addition the approach 

also allows inputs (e.g. development failure rates of participating systems) to be updated automatically 

for better decision-making. A primary output of the approach is the quantification of development 

interdependencies and the identification of critical systems with respect to propagating effect levels. 
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The outcomes of the analysis provide a support for decision makers to manage risk in development of a 

SoS with complex interdependencies. 

 

3.3.1 INTRODUCTION 

Whilst giving a SoS the characteristic capability of achieving its objectives, this interdependency can also 

cause failures to cascade through the SoS thereby causing potential development delays. Therefore, 

these properties of independence and interdependence make project management of SoSs challenging 

during the development process. For example, the Joint Strike Fighter (JSF, or F-35) continues to face 

schedule and cost overruns, partially due to the cascading effects of component systems failing to meet 

requirements. Many surveys show the schedule and cost overruns are serious problems in a SoS, 

especially defense programs. The Government Accountability Office (GAO) report estimated that the 98 

Major Defense Acquisition Programs (MDAPs) from FY2010 collectively overran their schedule by an 

average of 22 months and budgets by $402 billion (Dodaro, 2010). According to an independent report 

by the British Ministry of Defense, defense programs overran their schedule by an average of 40% 

leading to overall cost increases by 40% (Gray, 2009). Therefore, an adequate assessment of the 

cascading effects of risk among interdependent systems during the development process has the 

potential to reduce cost and schedule overruns. The rationale behind this is that such analyses can 

reduce risk of a project management. 

Several approaches have been developed to analyze systems interdependencies during operations and 

associated propagating impacts in different domains (Xu, Donohue, Laskey, & Chen, June 2005), (Han & 

DeLaurentis, Sep. 2011), (Nishijima, Maes, Goyet, & Faber, March 26-27, 2007). These studies focus on 

analyzing operational interdependencies between systems using data that is more readily available than 

the data required for analyzing development dependencies. In such scenarios researchers are restricted 

to carrying out analysis with limited information such as sparse data or expert opinions, and are hence 

struggling to quantify development dependencies. Therefore new approaches are needed not only to 

quantify the development dependency strengths with cascading system failures in a SoS during the 

system development but also, to deal with uncertainty. 

We propose a method to quantify the development dependency strengths between system builders. 

The method employs Bayesian Networks (BNs) to represent interdependencies between system builders 

in a SoS capability development context. The BN uses two inputs: 1) development failure rates of system 

builders and 2) dependency strength between system builders. BNs are particularly suited to such 

problems given their efficacy for representing causal relationships between systems involving 

uncertainty. Uncertainty is represented in a BN using beta distributions which increases the robustness 

of model outcomes. The BN is used on a synthetic problem to compute the impact of interdependencies 

between system builders. Results are described in the context of their use by decision makers to 

manage risk in development of a SoS with complex interdependencies. 
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3.3.2 OVERVIEW OF DEVELOPMENT INTERDEPENDENCY MODELING FOR SOS 

There are two ways to develop a new SoS: 1) integrate only existing off-the-shelf systems or 2) deploy 

nascent and inchoate systems with existing ones. In many cases, the latter is selected for the sake of the 

advancement of SoS wide capability. It is important for project managers to effectively estimate 

possibilities of developing new systems. However, estimating development possibilities for all activities 

is a challenge due to the complex interdependencies between systems activities organized for a SoS 

capability. We use failure rates of systems activities to represent possibility levels for a system 

development. Once a failure rate of each activity (in consideration with its interdependent activities) has 

been estimated it can be used for better decision making to reduce schedule and budget overruns. 

We develop an integrated simulation model to estimate failure rates of system activities in a SoS. The 

model identifies the system which is most susceptible to disruption propagation impacts. The outputs 

from the integrated simulation model are the estimated failure rates of all activities at scheduled time. 

The integrated simulation model is comprised of five principal steps (Figure 17) as described by the 

following: 

 

Figure 17. Overview of the integrated simulation model for development interdependency analysis 

 

3.3.3 INPUTS FOR DEVELOPMENT INTERDEPENDENCY MODELING – INITIAL DEVELOPMENT 

FAILURE RATES AND DEPENDENCY STRENGTH 

The first step in the modeling development interdependency analysis is to estimate initial development 

failure rates and the dependency strength of activities. Initial development failure rates of system 

activities depend on technology maturity levels and the system builder’s potential for the new system 

development. If a system builder has mature technologies or high potential to develop a new system, 

then initial development failure rate for that activity is low. It is important to account for uncertainty in 

the model and data in order to generate reliable results. Hence beta distributions are used to represent 

initial development failure rates to address uncertainties. Beta distributions are a family of continuous 

probability distributions defined on the interval between 0 and 1, parameterized by two positive shape 

parameters (α and β). There are several reasons for justifying the use of beta distributions in the 

Initial failure rates
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proposed model. First, beta distribution allows for the representation of various types of probability 

information (Reese, Johnson, Hama, & Wilson, 2005). Figure 18 presents various shapes of beta 

distributions according to two positive shape parameters. Second, when probability information is 

unavailable, the beta family is the best choice for determining the most conservative probability 

information (Dyer & Chiou, 1984). 

 

Figure 18. Various shapes of beta distributions 

The second major input, dependency strength, plays an important role in analysing propagating effects 

among interconnected systems. We use requirement connectivity matrix and system maturity levels to 

quantify dependency strength between system activities. In this study, dependency refers to 

requirements dependency. We assume that the individual component systems in our SoS are built 

independently. If there does not occur any problems during system development, development of the 

component systems should not have propagation of disruption between each other. However, if a 

disruption of the system development happens, then this disruption may propagate. For example, 

Unmanned Aerial Vehicle (UAV) and a satellite are constituent systems of a SoS. One of the SoS 

requirements is to send/receive data with high bandwidth between UAV and the satellite. To achieve 

this requirement, system builders should communicate with each other to develop compatible data 

transmission systems. This dependency strength is called ‘requirement dependency’. The dependency 

strength represents the chance that disruption in the activities of the UAV builder will propagate to the 

Satellite builder. The detailed process to estimate requirement dependency strength is as follows. 

 

3.3.3.1 Connectivity Matrix for Requirement Dependency 

The connectivity matrix is a column matrix indicating which requirements of a system depend on the 

other systems. Suppose in our last example, the UAV and the Satellite have three requirements each 

and one pair of requirements is dependent. If UAV’s 3rd requirement is dependent on the Satellite’s 1st 

requirement, then connectivity matrix for UAV and the Satellite can be represented by ConUAV
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1]T and ConSat


UAV=[1 0 0]T respectively. The connectivity matrix only allows binary entries 0 or 1, where 

‘0’ represents independence and ‘1’ represents independence. 

 

3.3.3.2 Conditional Probability of a Requirement Failure Given a System Builder Failure 

The second step is to quantify requirement dependency strength through estimating conditional 

probabilities of requirement failures using technology maturity scales. In the development process for 

high technology systems, system builders may not deliver new systems on time due to lack of 

technology maturity. In this study, we use a system-focused prescriptive metric entitled System 

Readiness Level (SRL) to estimate the technology maturity scales of a requirement. A requirement can 

be hierarchically decomposed into several systems needed to achieve the requirement capability. Figure 

19 represents the hierarchical representation of requirements and the capability of an entire system.  

 

Figure 19. Hierarchical representation of an entire system 

SRL is defined as a function of Technology Readiness Levels (TRLs) of component systems and 

Integration Readiness Levels (IRLs) of the integrations. TRLs are a systematic metric/measurement, 

invented by NASA that supports assessments of the maturity of a particular technology and the 

consistent comparison of maturity between different types of technology (Mankins, 1995). IRLs provide 

an integration specific metric to determine the integration maturity between two or more component 

systems (Gove, Sauser, & Ramirez-Marquez, 2007). Requirements can be interpreted as systems with 

several component systems. Therefore we can estimate the technology maturity scales for requirements 

using SRL metrics. In order to address uncertainty into SRL metrics, Tan, et. al. (Tan, Ramirez-Marquez, & 

Sauser, 2011) developed a probabilistic approach which provides a SRL probability distribution 

incorporated information of relative frequency of the TRL/IRL values provided by system evaluators.  

SRL can take values between 0 and 1. A system with a higher SRL value represents a matured system. 

The matured system has a smaller residual of the SRL value, unity minus a SRL value. We use mean 

values of SRL probability distributions to calculate the conditional probability of a requirement failure by 

normalizing residuals of SRL values for all requirements. If three requirements of UAV have SRL values of 
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0.4, 0.8, and 0.5 respectively, the conditional probability of requirement 1 failure given the UAV builder 

failure is as follows. 

 


    

    




(1 0.4)
( | ) 0.46

3 (1 0.4) (1 0.8) (1 0.5)

1

SRLresidual of req
1P UAV F UAV F

Req1
SRLresidual of req

i
i

 (11) 

 

After applying this process to all requirements, we can obtain a matrix including conditional probabilities 

of all requirements, P(UAVReq=Failure | UAV=Failure)=[0.46 0.15 0.39]. 

 

3.3.3.3 Quantify Requirement Dependency Strengths 

Requirement dependency strengths are obtained by multiplying the connectivity and conditional 

probability matrices. The dependency strength represents the probability that disruption of a system 

builder will propagate to its dependent system builder. The failure of UAV builder may propagate to the 

satellite builder with the probability of 0.39 as calculated in the following equation: 

         ( | ) 0.39DependencyStrength P UAV F UAV F ConUAV Sat Req UAV Sat  (12) 

 

3.3.4 AN INTERDEPENDENCY ANALYSIS OF A SYSTEM-OF-SYSTEMS USING A BAYESIAN NETWORK 

3.3.4.1 A Bayesian Network 

As mentioned in the previous section, a Bayesian Network is a directed acyclic graph (DAG) whose nodes 

are random variables and whose edges directly influence one another. Local probabilities represent the 

nature of the dependence of each variable (node) on its parents. Probability information in a Bayesian 

Network model is defined through these local distributions. A node with no parent node in the Bayesian 

Network model denotes a random variable and its associated probability distribution. A node with its 

parent node(s) can be represented as a conditional probability distribution (CPD). The first important 

step to build the BN is to construct the network of interests while considering dependencies between 

nodes and to estimate failure rates of nodes. Requirement dependency strength and failure rates of 

system builders mentioned in section 3.3.3 are used to form the BN. 

In this study, a Bayesian Network (BN) is adopted to analyze interdependencies between systems. The 

BN can graphically represent interactions among multiple components and provide the basic structure 

for analyzing and visualizing the development SoS model. The BN is a probabilistic tool that evaluates 

networks of systems with respect to disruption propagation in developing systems for a SoS. The 

evaluation not only identifies critical components from a risk perspective, but also can show disruption 

and dependency effects on total expected development time of the SoS capability. 
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3.3.4.2 Propagating System Failures through Interdependencies 

There are two sources of system failure in a SoS context: inherent and propagating. If a system fails on 

its own, then it is called an inherent failure. However, if a system failure is caused by propagating effects 

from interdependent systems, it is then called a propagating failure. It is therefore important to fuse all 

failure information, inherent and propagated.  

Figure 20 shows a simple Bayesian Network where the node Y has N parent nodes. The research here 

focuses on binomial failures for a node. For example, each node in the Bayesian Network can only take 

values 0 or 1 to represent the status of the component as ‘failure’ or ‘working’, respectively. This is a 

limiting factor of the approach which we will revisit at the conclusion.  

 

Figure 20. A Bayesian Network representation 

Consider that each node has its own inherent failure rate defined by a beta distribution and node Y has 

n parents, X1…Xn. A Beta distribution is parameterized by two positive shape parameters, denoted by 

sn+1 and sn+nn+1. These two positive parameters are interpreted as the number of failures and survivors 

respectively when sn and nn are integers (Springer & Thompson, 1966). Let PA(Y) denote the set of the 

parents of the node Y, i.e.{ X1…Xn }. According to the law of total probability, the propagating failure rate 

of node Y is: 

 
p Y CPD p PA Y k

k
k

  ( 0) ( ( ) )  (13) 

where    ( 0 ( ) )CPD p Y PA Y k
k

, k is all combination of parent node values. For example, if PA(Y) 

includes two parent nodes (X1 and X2), then  {{0,0},{0,1},{1,0},{1,1}}k . Therefore, a node with two 

parent nodes has four CPDk values. CPDk values here indicate the dependency strength of a failure 

propagating to a dependent system. For instance, if node X1 (or X2) fails, then node Y has 30% (or 20%) 

of chance to fail by a propagating effect of the node X1 (or X2) failure. In this case, all CPDk values are 

determined:    ( 0 1, 0) 0.3
1 2

p Y X X ,    ( 0 0, 1) 0.2
1 2

p Y X X , 

   ( 0 0, 0) 0
1 2

p Y X X , and    ( 0 1, 1) 0.5
1 2

p Y X X . Analytical solution, ( 0)p Y , for the 

propagating failure rate of node Y is very likely to be non-parametric due to its complicated functional 

form. For computational convenience, we use the approach in reference (Liu, Li, & Kim, 2011), 

(Thompson & Haynes, 1980) to approximate the propagating failure rate with a beta distribution having 

the same first two moments. Let beta(b,c) denote the beta distribution of the propagating failure rate of 

node Y. Then, the first two moments of this distribution are: 

X1
Xn

Y

…
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12( ) , ( ) ( )
1 2 1

b b
M E Y and M E Y E Y

b c b c
 (14) 

The first moment of p(Y=0) is the mean: 

 
       ( ( 0)) ( ( ( ) )) [ ( ( ) )]

1
M E p Y E CPD p PA Y k CPD E p PA Y j

k k i
k k i

 (15) 

where j is the value for PAi(Y) in the set of k. For computational ease, equation (15) can be further 

written as the follows. 

 
  

         
  

1
( ( 0)) { [ ( ( ) 0)]}

1 2

s
iM E p Y CPD j E p PA Y CPD j

k i i k i nk ki i i

 (16) 

The second moment of p(Y=0) is the mean of p(Y=0)2: 

 
    

      
    

1 ( 1)( 2)
2 2( ( 0) ) 2

2 2 ( 2)( 3)

s s s
i i iM E p Y CPD j j

k i i n n nk i i i i

 (17) 

Finally, we can define two parameters, b and c, for a beta distribution of p(Y=0) as 

 
  

 
 

( ) (1 )( )
1 1 2 1 1 2,

2 2( ) ( )
2 1 2 1

M M M M M M
b c

M M M M

 
(18) 

Now, node Y has two different beta distributions, one for inherent failure rate and one for propagating 

failure rates encapsulated in equation (18). These two beta distributions are integrated to get the new 

failure rate distribution of node Y. This task can be easily completed using the same process for 

obtaining fusion of all propagating failure information mentioned above, with different CPDs indicating 

100% propagating effects. After applying these two fusion processes (the first being the fusion of 

propagating effects from dependent systems for the propagating failure rate and the second being the 

fusion of both inherent and propagating failure rates for the new integrated failure rate) to all nodes in a 

network, we can obtain the beta distributions of the new failure rate information including the 

propagating effects for all nodes. This result can be used to determine the critical (vulnerable) 

component and the expected development time for the SoS. 
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3.3.5 UPDATE OF FAILURE RATES FOR ALL ACTIVITIES 

The failure rates of the system development may vary with time. If the system builder follows the 

schedule without any hiccups during the system development phase, development risk may decrease. In 

addition to evolution of the failure rates, uncertainty values in the failure rates of the systems decrease 

as time elapses. For example, assume that there are N times that the schedule is checked during a 

system development (Figure 21). At each time step, a project manager estimates the failure rates of the 

system. In the beginning of the system development, uncertainty in the failure rates is high. However, 

once he knows the status of the system development at the time tn, he may estimate more accurate 

failure rates of building the system. Therefore, for an accurate and reliable result, the proposed method 

includes analysis of update of failure rates for all activities with uncertainty. 

Figure 21. Uncertainty on the time steps 

 
In this study, we use event tree analysis and beta distributions to update failure rates of all systems. An 

event tree is a commonly applied technique used for identifying the consequences following the 

occurrence of potential events such as failures or successes. It was first applied in risk assessments for 

the nuclear industry but is now utilized by other industries such as chemical processing, offshore oil and 

gas production, and transportation. We can estimate the outcome of the SoS development failure rate 

by quantifying the event tree diagram. Figure 22 shows a very simple event tree structure for the 

development schedule of a SoS. All events are the scheduling checks during the SoS development. The 

branch points consider the failure and success of each event. The outcomes determined by the end 

point of each event tree branch identify a different value for failure or success following the initiating 

event. Total failure rate of a SoS development can be obtained by summing up all outcomes of failures 

at the end points of the event tree. If we know the initial failure rate and conditional probability of the 

system failure given the system failure or success at the previous step, then the event tree 

quantification is the simple task of multiplying the probabilities of passing along each branch point on 

any path through the diagram by the conditional probabilities. For example, let the initial system failure 

rate and conditional probabilities of the system failure probabilities given failure and success be 

P(Ft0)=0.1, P(Ft1|Ft0)=0.4, and P(Ft1|St0)=0.6. Then system failure rate P(Ft1) at time t1 can be calculated 

using the following equation. All failure rates at any time steps can be estimated in the same way. 

                    t1 t0 t1 t0 t0 t1 t0P F  P F  P F |F 1  P F  P F |S 0.1 0.4 0.9 0.6 0.56  (19) 
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Figure 22. A very simple event tree structure for an example development schedule 

The historical data is used to estimate the initial failure rate and conditional probability of the system 

failure. In the absence of such information, we can also use uninformative distributions as initial inputs 

such as, uniform distribution. As time elapses, we observe the results at each time step. These 

observations can be used to update conditional probabilities of the system failure by adding weighted 

numbers to parameters of beta distribution. This process allows uncertainty of the system failure to 

decrease as time goes by. 

 

3.3.6 APPLICATION: A SYNTHETIC DEMONSTRATION PROBLEM 

A simple synthetic problem is formulated and solved to demonstrate the proposed approach. Figure 23 

shows the representation of a five-system network, where, the development of system 1, here denoted 

by S1, depends on the development of system 2, 3, and 5. This implies that a failure from one system 

development process affects the development of dependent systems due to requirement 

interdependencies between systems. For system 1, a failure cascades from system 2, 3, and 5 to system 

1. The T values indicate the requirement dependency strength and correspond to the conditional 

probability of a failure propagating to a dependent system. For instance, if system 3 fails, then system 1 

has 25% of chance to fail by a propagating effect of the system 4 failure. In order to estimate the 

requirement dependency strengths for all pair of systems, all systems should be decomposed into 

requirements and further into constituent systems. Then connectivity matrix and system readiness 

levels (SRLs) can be obtained using requirement relationships and TRL/IRL of constituent systems. Finally, 

the proposed method mentioned in section 3.3.3 allows us to estimate the requirement 

interdependency strengths. For simplicity, we skip over the detailed process entailed to obtain these 

……. …….

……. …

…
…….
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values. The table in Figure 23 summarizes initial failure rates for all systems and conditional distributions 

of failure rates in terms of beta distributions, and expected development time for each system.  

   

Figure 23. A five system development network and all input information for the analysis 

Consider the information fusion of failure rates of system 2, 3, and 5 with system 1 (  

Figure 24). System 1 is connected to three dependent systems, 2, 3, and 5, with interdependency 

strength of 0.16, 0.25, and 0.20 respectively. Systems 2, 3, and 5 have their own inherent failure rates 

with beta distributions shown in   

Figure 24 (a). The propagating failure rate on system 1 is easily calculated through the proposed 

approach, based on the given information about inherent failure rates and conditional probability for 

propagating effects. In   

Figure 24, blue lines denote the inherent failure rate distributions for systems and red lines denote the 

propagating failure rate on system 1. The green line in   

Figure 24 (b) represents the integrated failure rate for system 1. The mean of the system 1 integrated 

failure rate represents an increase of 0.26 over its inherent rate value due to the propagating effects 

from dependent system failures. Figure 25 shows the mean values of propagating effects for all systems. 

These values depend on the number of dependent systems and the failure rates of dependent systems. 

System 1 has the highest propagating effects, indicating strong dependencies with numerous other 

systems. It also has a higher probability to be disrupted by the failure of other systems during the 

development process. Since it is hard to control this kind of failure, the design team for system 1 should 

consider these propagating effects when scheduling the development time.  

 
(a) Propagating failure rate                                          (b) Integrated failure rate  

Figure 24. Information fusion of failure rates of system 2, 3, and 5 with system 1 

System 5

System 1

System 2

System 3 System 4
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System 4 Beta (9, 9) Beta (4,7) Beta (5,3) 9
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Figure 25. Mean values for failure rates propagating to systems 

The same synthetic problem is now used to measure the effects of disruptions and dependencies. The 

total expected development time is adopted to measure development time of a SoS capability. We 

assume that each system manager sets up the expected development time for their system as defined in 

the table in Figure 23, indicating that in the absence of any failures, each system can be completed in 

the expected development time. Each system also has a development delay time due to its failure rate, 

calculated as the product of failure rate and the expected development time. For instance, if a system’s 

failure rate is 0.6 and expected development time for the system is 1, then the project team of this 

system needs 1.6 times the normal duration to complete it. Therefore, the total expected development 

time can be formulated as the follows: 

  
i

ii timetdevelopmenexpectedratefailuretimetdevelopmenexpectedTotal )1(

 

(20) 

 Table 1 shows the expected development time with/without considering disruption and dependency 

effects. The disruption and dependency effects increase total development time by 1.6 times. This 

schedule overrun usually ends up with cost overruns. Therefore when decision makers take a decision 

on a new SoS capability, disruption/dependency levels of required systems should be considered. 

Table 1. Disruption and dependency effects to expected development time 

Systems 

Expected development time (months) 

without disruption & 

dependency effects 

with disruption effects 

& without dependency 

with disruption & 

dependency effects 

System 1 6 9.1 10.7 

System 2 8 9.2 10.8 

System 3 5 6.5 7.6 

System 4 9 13.4 13.9 

System 5 6 10.7 11.5 

Total 34 48.9 54.5 
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Suppose there are 10 time steps for scheduling checks during the development process. In the beginning 

of the SoS development, it it hard for decision makers to estimate whether this project will end on time 

or not due to the high uncertainty. However, as time goes by, decision makers gain confidence in the 

results. Figure 26 (a) shows this pattern using the mean values of the integrated failure rate of system 4 

with 95% confidence interval. In this case, we use the best case scenario to run the simulation, 

indicating that all schedules at every time step are met on time. These observations are also applied to 

update failure rate of system 4. Figure 26 (b) represents three different cases - best, worst, and 

expected, of integrated failure rates of system 4. All observations in the worst case are failures to 

achieve the schedule at each time step. We also draw numbers from beta distribution of integrated 

failure rate at the previous step to define the expected case. System 4 can lie anywhere in between best 

and worst cases. If the integrated failure rates of system 4 shows an increasing pattern then decision 

makers need to devote more attention to system 4 or substitute it with an alternative system.  

 

(a)                                                                                               (b) 

Figure 26. (a) Mean values of integrated failure rate of system 4 with 95% confidence interval, (b) Mean 

values of integrated failure rate of system 4 in three different cases 

 

3.3.7 CONCLUSION AND FUTURE WORK 

The development process of a system-of-systems capability is often affected by risks arising from 

interdependencies between constituent systems during the development life cycle. Research in this 

section adopts a Bayesian Network approach to analyze interdependencies using constituent system 

failure rates and requirement dependency strengths between systems. Propagating failure rates are 

calculated to describe interdependencies, with inherent failure rates being evaluated for individual 

systems. By the integration of these two failure rates, both currently expressed as beta distributions, a 

new failure rate distribution is achieved that holistically represents the true risk and  accurately 

determines the critical components. Uncertainty represented in a Bayesian Network using beta 

distributions allows for enhanced robustness of model outcomes. Event trees are used to show 
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evolution of constituent system failure rates during the development process. Results that consider both 

evolution of constituent system failure rates and propagating effects can help to manage risk in 

development of a SoS with complex interdependencies. 

A simple, synthetic five-system SoS problem demonstrates the proposed framework. Results show the 

increase in integrated failure rate due to the propagating effects of interdependencies. The comparison 

of integrated failure rates among all systems is useful in identifying the most critical system in terms of 

which system generates the most vulnerability to propagating effects from dependent systems. 

 The specific Bayesian Network formulation approach in this research rests on two basic assumptions. 

First, systems can only have one of two discrete states, such as ‘working’ or ‘failure’; thus continuous 

variables such as development percentage cannot be expressed directly.  Second, the interdependency 

strengths between systems are assumed constant; thus there is no evolution of the interdependency 

strengths. Future work will address the relaxation of these assumptions. Furthermore, there is a need to 

develop a strategic action tool, as shown in the overview of the integrated simulation model in Figure 17. 

This tool will allow decision makers to take better decisions in a SoS development process.  
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3.4 A MARKOV MODEL TO ANALYZE DEVELOPMENT INTERDEPENDENCIES IN SYSTEM-OF-
SYSTEMS 

Markov-Chain-like Networks have been used to identify interdependency characteristics, evaluate how 

disruptions propagate in complex networks of interdependent systems, quantify the cascading effects of 

development risk, and compare networks of systems in their ability to reduce the impact of risk. 

 

3.4.1 INTRODUCTION 

The interdependencies between constituent systems form networks that, while enabling capabilities 

that are beyond those of individual systems, also increase risk since disruptions (failures, delays, 

requirement evolution) may propagate to other directly or indirectly dependent systems. Therefore, 

network analysis tools can help to describe the property of a network, to identify critical or vulnerable 

constituent systems or aggregations of systems and to individuate convenient metrics to compare 

different networks. 

In this proposed approach, the network of interdependencies is based on a Markov process model. A 

Markov process is a stochastic process with the Markov property; this property, also called 

memorylessness, means that the conditional probability distribution of future states of the process 

depends only upon the present state, not on the sequence of events that preceded it. Thus, a Markov 

chain, i.e. a Markov process with a discrete state-space, is completely defined by the initial probabilities 

for each state and the matrix of transition probabilities. 

The proposed approach characterizes the network as a Markov chain, represented by a directed graph 

with Markov property. The states, depending on the analyzed level, are the constituent systems (low 

level) or the requirements (medium level), while the edges are the interdependencies between states, 

the transition probabilities are the dependency strengths between systems, and the edge weights assess 

the impact caused by the dependency. 

Due to the Markov property, the transition probability between two states is not depending on the 

previous evolution of the process, but only on the current state; nonetheless, the probabilities may 

change with time, due for example to change in requirements or in technologies. The Markov chain so 

built is used in the proposed approach to develop and test metrics suitable both to individuate critical 

constituent systems, requirement, interdependencies paths (system-level metrics) and to compare 

different networks (network-level metrics). 

3.4.2 ANALYTIC FRAMEWORK 

The metric is developed according to the formulation by (Mane, DeLaurentis, & Frazho, 2011). A typical 

network is shown in Figure 27. An additional state is added, representing the absorption of the 

disruption. 

A single disruption can be generated in any node of the network, with a given probability, and is then 

propagated along the network, until absorbed. Required inputs are: 

 the matrix A of transition probabilities.                     . 
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 the vector b of probabilities of initial disruption arising in a given node.            . 

 the vector c of probabilities of disruption to be absorbed by a given node.           

1|   ). 

 

 

Figure 27. A Markov network. F is the absorbing state, T’s are the transition probabilities, D’s are the 

weights (importance of the disruption being propagated through a link) 

 

The expected time before disruption absorption is computed for each node, by Markov property (Mane, 

DeLaurentis, & Frazho, 2011), as 

                            

 

   

       

 

   

            (21) 

 

The nodes can then be ranked based on their criticality in the propagation of disruption that is higher if 

the expected time before disruption absorption is higher.  

The total expected time before disruption absorption for the entire network is the sum of all expected 

time (one for each node), each multiplied by the probability of disruption arising in the corresponding 

node. This formulation is suitable to compare different architectures for development networks. 

This Markov model can be applied to any kind of architecture, given that the Markov property is 

realistic, and it is better suitable for directed/collaborative SoS type. Limitations of the model are the 

hypothesis that the disruption is propagated to a single state per time, and the low flexibility to addition 

or deletion of a node, since an entire new transition matrix is required, to satisfy the Markov property. 
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3.4.3 APPLICATION: AN ILLUSTRATIVE EXAMPLE 

 

The method has been applied to a small five-node network, ranking each node based on the expected 

time before disruption absorption when the initial disruption originates in that given node. The network 

is organized according to two different architectures (Figure 28): a whisper architecture, where the 

nodes are directly connected to each other (and the disruption directly propagates through the nodes), 

and a blackboard architecture, where the connection between each pair of nodes flows through a 

common blackboard node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                               (b) 

Figure 28. (a) Five-node whisper architecture, (b) Five-node blackboard architecture 

 

The results (Table 2) show that the nodes present different criticality if the architecture changes, with 

node 1 being the most critical in the whisper architecture, and node 3 being the most critical in the 

blackboard architecture. 
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Table 2. Node ranking by Markov analysis in whisper and blackboard architectures 

 Whisper Blackboard 

 Expected time Impact rank Expected time Impact rank 

System 1 0.2118 1 1.6799 2 

System 2 0.1467 3 1.5183 4 

System 3 0.1712 2 2.0405 1 

System 4 0.0730 5 1.4261 5 

System 5 0.1175 4 1.5970 3 

3.4.4 CONCLUSION AND FUTURE WORK 

A Markov-chain-like network representation for SoS, and a metric to assess the cascading effects of 

disruptions in a SoS development network have been successfully surveyed and tested.  

Results showed that this method can classify nodes based on the expected time before disruption 

absorption that gives a measure of the impact of the node on the cascading effect of disruptions in the 

network. In addition, since the metric gives an evaluation of the robustness of the entire architecture, it 

is suitable to compare different architectures. 

After this preliminary survey and application, such method has not been further extended: as described 

in the previous sections, Bayesian networks have been used to develop probabilistic metrics to analyze 

interdependencies, while a new method to analyze development dependencies is presented in section 

3.6. 

 

3.5 DEPENDENCY NETWORK ANALYSIS 

A Dependency Network Analysis technique (Garvey & Pinto, 2009) has been adapted to assess 

operability, reliability, and resilience in both operational and development networks, associated with 

System of System architectures. 

The architecture is modeled as a directed network where nodes represent either the component 

systems or the capabilities to be acquired. Links on the network represent various kinds of dependencies 

between the constituent systems: functional dependency in an operational network, sequential 

development dependency in a development network. Each dependency is characterized by strength and 

criticality. The ultimate goal of the technique seeks to analyze effects of such dependencies -and of their 

strength and criticality- on operability, and to identify valid operating and developing strategies and 

architectures. For operational networks, Functional Dependency Network Analysis (FDNA) is used to 

assess the effect of topology and of possible degraded functioning of one or more systems on the 

operability of the network. For development networks, Development Dependency Network Analysis 

(DDNA) is used to assess how development time or capabilities are affected by the network topology 

and by delays in the development of component systems. 

Each technique is evaluated with regard to amount and quality of necessary input, completeness and 

usefulness of results, and applicability to problems of diverse nature.  
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3.5.1 FUNCTIONAL DEPENDENCY NETWORK ANALYSIS 

 

3.5.1.1 Analytic Framework 

In FDNA, the SoS is represented as an operational network, with the nodes being component systems or 

capabilities to be achieved. The links represent a dependency of the operability of a node (successor 

node) from another (predecessor node). 

 

 

 

 

Figure 29. Operational dependency of node Nj from node Ni 

The operability of a node is defined as the “percentage” of effectiveness, that is the level at which the 

system is currently operating, or the level at which the desired capability is being currently achieved. 

Operability, ranging between 0 and 100, can be related to performance by means of an input function. 

In the example in Figure 30, a planetary probe communication system is evaluated based on the number 

of valid data downlinks per week (performance), with its operability (effectiveness) being 100 when the 

system performs 1000 valid data downlinks per week, and the degraded operability being 25 when the 

system performs 380 valid data downlinks per week. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Correlation between Performance and Operability of a system. 

Using this relationship, the operability of root nodes, i.e. nodes that have no predecessors, can be 

evaluated based on their current performance. FDNA analysis, then, allows for the computation of 

successor nodes operabilities, which can in turn provide a value for the nodal performance. In this 
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research, the function relating performance and operability is assumed to be a given input, and the 

method is described on the basis of the operability. 

Further input is required:  

for each node Ni, a self-effectiveness level SEi is needed, ranging between 0 and 100. For root nodes, this 

is just the operability; for nodes that have at least one predecessor, the self-effectiveness is the level of 

operability that the node would have, if it were a root node: therefore, the self-effectiveness assess the 

current status of a node, not accounting for its dependencies. 

For each link, two values are needed. The strength of dependency (SOD) between node Ni and node Nj, 

αij, and the criticality of dependency (COD) between node Ni and node Nj, βij. αij must be between 0 and 

1, and can be evaluated as the fraction of the operability level of node Nj due to the dependency by 

node Ni. For example, if the operability level of node Nj (working at self-effectiveness equal to 100) is 70, 

then αij is equal to 0.3. βij must be comprised of values between 0 and 100, and it can be evaluated as 

the maximum level of operability reachable by node Nj, when the operability of node Ni is 0. A lower 

value βij corresponds to a higher criticality of dependency. 

 

 

 

 

 

 

Figure 31. A small network, showing the required input for FDNA 

According to the method proposed by Garvey and Pinto, the operability of root nodes is simply their 

self-effectiveness:  

Oi = SEi (22) 

The operability of nodes that have at least one predecessor is computed as the minimum of two terms, 

one depending on the SODs, one depending on the CODs: 

Oj = min(SOD_Oj, COD_Oj) 
(23) 

 

For a node Nj having n predecessors, the two terms are computed according to equations (24) - (27): 
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SOD_Oj = Average (SOD_Oj1, SOD_Oj2, … , SOD_Ojn) 
(24) 

SOD_Oji = αijOi + (1-αij)SEj 
(25) 

COD_Oj = Min (COD_Oj1, COD_Oj2, … , COD_Ojn) 
(26) 

COD_Oji = Oi + βij 
(27) 

The term accounting for SOD is the average operability values of node Nj, computed for each 

dependency from a predecessor node Ni, thus reflecting the relationships between the n predecessors 

and the node Nj. The term accounting for COD is the minimum of the values of the operability of node Nj 

computed for each dependency from a predecessor node Ni, thus precisely reflecting the importance of 

the most critical dependency.  

Using equations (22) - (27), the operability of each node can be sequentially computed, starting from the 

root nodes, in a breadth-first way: after the roots, nodes directly depending from the root are analyzed, 

and so on. 

3.5.1.2 Application 

 

To assess the value and applicability of FDNA for SoS, the method is applied to a simple five-node 

aerospace network (Figure 32). 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                     (b) 

Figure 32. (a) the five-node aerospace SoS; (b) the same SoS represented as a network, with the 

required input for FDNA: self-effectiveness of each node, and COD and SOD of each link. 

The network includes ground facilities (N1), two satellites (N2 and N4), a UAV (N3), and a ship (N5). The 

links represent communication and data dependencies for location: the satellites and the UAV need 

data from the ground facilities, the UAV also uses the satellites for navigation, and the ship gets data 

N4 
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from the UAV and from one of the satellites. The input can be given in form of a vector for the self-

effectiveness, and two matrices containing the terms αij and βij (nonzero entries in the SOD matrix 

correspond to dependencies in the network). 

 

 

 

SE = [SE1 SE2 SE3 SE4 SE5] 

 

 

 

Deterministic analysis 

 

In this kind of simulation, different values for the self-effectiveness, i.e. degraded operability of system, 

are fed into the equations, to compute the actual operability of each system. Table 3 shows the results 

of degraded operability (level of operability equal to 75 or to 25) in a single system. 

Analysis of these results give good insight into the influence of dependencies into such network: first of 

all, the five-node SoS appears to have high resilience in these cases: any single failure that degrades the 

operability of a system down to 25, can at most degrade the operability of the ship down to 68.22. The 

second result from FDNA analysis is the identification of the most critical nodes, in this case nodes N1 

and N4 most affect the operability of other nodes. While some result is anticipated (for example, since 

there is a path from node N1 to any other node, its influence is expected), other behaviors are captured 

by FDNA. For instance, node N4 shows positive criticality for what concerns the dependency of node N5: 

when the satellite N4 is working at level 100, the operability of the ship is never lower than 85, even if 

other systems influencing N5 are degraded. Finally, FDNA allows more complex analysis, based on the 

output of interest: for example, it can be noted that, if the operability of the ship is the object of the 

evaluation, highly degraded operability of node N3 is worse than highly degraded operability of node N2; 

if instead the global operability of the network, computed as the sum of the operability of each node, is 

the measure of interest, highly degraded operability of node N3 gives better results than highly 

degraded operability of node N2 (noticeably, this is not true if the operability decreases to 75. This is due 

both to the CODs and SODs, and to the topology, sources of complexity in the network. To better catch 

these details, stochastic analysis can be performed).  

Table 3. Degraded self-effectiveness in single systems. O=operability of the nodes 

Self-effectiveness [N1 … N5] O1 O2 O3 O4 O5 

[75 100 100 100 100] 75 88.75 90.60 88.75 91.79 

[25 100 100 100 100] 25 66.25 55 66.25 68.22 

[100 75 100 100 100] 100 86.25 97.71 100 99.03 

[100 25 100 100 100] 100 58.75 93.13 100 97.08 

[100 100 75 100 100] 100 100 87.5 100 95.22 
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[100 100 25 100 100] 100 100 66.25 100 85.66 

[100 100 100 75 100] 100 100 97.94 86.25 93.97 

[100 100 100 25 100] 100 100 93.75 58.75 78.75 

[100 100 100 100 75] 100 100 100 100 95 

[100 100 100 100 25] 100 100 100 100 85 

  

Table 4. Examples of degraded self-effectiveness in pairs of systems. O=operability. 

Self-effectiveness [N1 … N5] O1 O2 O3 O4 O5 

[25 25 100 100 100] 25 25 55 66.25 68.22 

[25 100 25 100 100] 25 66.25 38.06 66.25 61.02 

[25 100 100 25 100] 25 66.25 55 25 45 

[25 100 100 100 25] 25 66.25 55 66.25 53.22 

[100 25 25 100 100] 100 58.75 59.38 100 82.73 

[100 25 100 25 100] 100 58.75 86.94 58.75 78.75 

[100 25 100 100 25] 100 58.75 93.13 100 82.08 

[100 100 25 25 100] 100 100 60.06 58.75 67.56 

[100 100 25 100 25] 100 100 66.25 100 70.66 

[100 100 100 25 25] 100 100 93.75 58.75 66.88 

 

In Table 4, results achieved with deterministic analysis of the network with two degraded systems are 

shown. Once again, even this small experiment shows useful results: besides confirming nodes N1 and N4 

as the most critical, the analysis shows that a failure in node N5 is not anymore well absorbed if there is 

a concurrent degraded functioning in node N1. Globally, however, the SoS shows a good capability of 

reacting to degraded operability. 

 

 

Stochastic analysis 

 

A more realistic view of the behavior of a SoS as a function of the dependencies between the 

component systems can be achieved by means of a stochastic analysis with the FDNA technique. This 

kind of analysis is useful to capture and summarize all the aspects related to SOD and COD, as well as to 

topology, in a few probability distributions (as reported above, such details are spread in the tables for 

deterministic FDNA). Since the five-node network is very small, a Monte Carlo simulation has been 

executed.  

The computation of the expected value for the operability of a system gives a measure of the resilience 

of such system to failures of the predecessors, while the variance evaluates the sensitivity of the system 

to failures of the predecessors. Differently from the deterministic analysis, this evaluation is not based 

on the simulation of single instances (that could for example neglect some COD), but it accounts for any 

possible combination of the effects of COD, SOD, and topology. The capability of this kind of analysis to 
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capture behavioral patterns and features of a whole architecture makes it suitable to be used as a 

decision tool. 

The analysis confirmed that the systems in the five-node network are resilient to single failures in the 

predecessors, with a probability distribution shifted towards high values of operability (Figure 33 (a)). 

The complexity of the interdependencies between systems, resulting in more complex behavior, arises 

even if only two system experience a degraded operability in the simple five-node network, as shown in 

Figure 33 (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                    (b) 

Figure 33. Probability distribution for the operability in the five-node system. (a) single failure in node 

N1, beta probability distribution for self-effectiveness of node N1; the probability distribution of S2 

coincides with that of S4; (b) failure in nodes N1 and N4, with independent uniform distribution: node N3 

is in this case more resilient than node N5, differently from what appears in 32a 

 

Example of greater complexity 

An additional scenario is executed using a more complex twelve-node network (Figure 34), with three 

ground facilities (N1, N2, N3), two satellites (N4, N5), two UAVs (N6, N7), a ship (N8), an airplane (N9), and 

three nodes corresponding to desired capabilities: long range detection (N10), short range detection 

(N12), and rescue (N11). The results further demonstrate the power of FDNA in comparing different 

architectures, as well as the result of removal of nodes or dependencies from a system. Four 

deterministic tests are reported and results are shown in Table 5. 

Interesting outcomes have been achieved, showing unexpected behavior and patterns not directly 

predictable through the knowledge of the component systems, that is one of the definitions of 

emergence in the SoS. If node N7, i.e. one of the UAVs, is removed from the SoS (meaning that the short 

range observation is based only on the ship and the airplane), when node N1 has degraded self-
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effectiveness, the operability of node N11 unexpectedly increases. The operability of node N12, instead, 

slightly decreases when nodes N1, N5, or N8 are self-effective at level 20, but node N12 is not anymore 

affected by degraded self-effectiveness of node N2. Therefore, such architecture could be preferable if 

nodes N1 and N2 is prone to failures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. The twelve-nodes SoS 

When the dependency of node N9 on node N8 is removed, the operability of nodes N11 and N12 globally 

increases. Noticeably, if node N9 is having a degraded self-effectiveness, its dependency from a single 

node (N3) gives a high operability, resulting in better operability of nodes N11 and N12..Finally, a small 

architecture change has been tested: node N5 is dependent from node N2 instead than N1, and node N6 

is dependent from node N1 instead than N2. This new architecture gives lower operability in some case, 

but it can be noticed that node N10 has a smoother behavior, with the operability being the same for 

degraded self-effectiveness of nodes N1 and N2. The architecture can then be evaluated based on the 

importance of the requested capabilities (N10, N11, N12), and on the probability of failures of N1 and N2.  

 

 

Table 5. Twelve-node SoS experiment: indicated system is having a self-effectiveness of 20 (single failure 

in other systems gave the same results for all the experiments), while all other systems have self-

effectiveness equal to 100 

 

Test O10, O11, O12 

(N1=20) 

O10, O11, O12 

(N2=20) 

O10, O11, O12 

(N5=20) 

O10, O11, O12 

(N8=20) 

O10, O11, O12 

(N9=20) 

Basic network 
79, 96.36, 

98.59 
100, 75, 70 

69, 93.2, 

97.37 

100, 54, 91.23 100, 96.5, 79 

Node removal 
79, 97.25, 

97.89 
100, 75, 100 

69, 93.2, 

96.05 

100, 54, 86.84 100, 96.5, 79 
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Link removal 
79, 97.45, 

99.1 
100, 75, 70 

69, 93.2, 

98.32 

100, 54, 94 100, 98.5, 91 

Diff. 

architecture 
89.5, 75, 100 89.5, 92.6, 70 

69, 93.2, 

97.37 

100, 54, 91.23 100, 96.5, 79 

 

 

3.5.2 DEVELOPMENT DEPENDENCY NETWORK ANALYSIS 

A Development Dependency Network Analysis (DDNA) method, based on the concepts of SOD and COD 

from FDNA, is developed. It is applied to development SoS networks, where the links, like in PERT, 

represent development dependencies between systems. The outcome of such analysis is the beginning 

time and the completion time of the development of each system, as well as an assessment of the 

combined effect of multiple dependencies and possible delays in the development of predecessors. As 

in FDNA, this method evaluates the most critical nodes and dependencies, and can be used to compare 

different architectures in term of development time. Also, if some of the nodes are capabilities to be 

achieved, the method assess the time, or the expected time, in probabilistic analysis, by which each 

capability is available. The method has been developed to also account for the possibility of measuring 

partial capabilities attained during the development of a SoS. 

 

3.5.2.1 Analytic Framework 

Compared to existing methods, such as PERT/CPM, DDNA provides more specific insight into the effects 

of multiple and diverse dependencies on the development of SoS. These include: 

The strength of dependency affects both the beginning time and the completion time of development of 

a system. Differently from PERT, development of a system can start before a predecessor is complete, if 

the dependency has not reached criticality. Therefore, a more realistic analysis of development time is 

achieved. Above all, this feature allows DDNA to assess partial capabilities during the development of a 

SoS. 

COD affects the beginning time in the same way as in PERT/CPM: a successor must wait until a critical 

predecessor is complete to begin development. Instead SOD results in a less absolute dependency. 

Differently from FDNA (where performance is related to operability), in DDNA time is directly used into 

the computation, and the level of performance constitutes an assessment of the quality of the 

development (for example, three weeks could be the best time for a system, ten weeks could be the 

worst, but eight weeks could correspond to a satisfaction of 50%). 

In DDNA, each node requires three pieces of input data: the minimum independent time (MINIT), that is 

the minimum duration of development of the system; the maximum independent time (MAXIT), that is 

the maximum duration of development of the systems; the self-effectiveness (SE) that linearly evaluates 

how much the system is close to being developed with its minimum duration time, without accounting 

for dependencies. If SE=0, then the independent duration of development is equal to MAXIT. If SE=100, 

then the independent duration of development is equal to MINIT. Due to dependencies, the actual time 
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to develop a system can be longer than MAXIT (but in this case the system must have begun its 

development before the completion of a predecessor, thus resulting in earlier partial capabilities), 

whereas it can never be shorter than MINIT. 

Each link requires two input data: the strength of dependency (SOD) and the criticality of dependency 

(COD). The SOD evaluates how much a system can begin its development before the completion of the 

predecessor, it constitutes a parameter for the parabolas shown in Figure 35 (a). This shape has been 

chosen because it results in anticipated development for systems depending from a node with medium-

high SE, while no early development is allowed when the predecessor is being developed either in its 

best time, or with a SE below the critical threshold. In future research, these curves will be compared to 

data from industrial projects and consequently adapted.  

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                    (b) 

Figure 35. (a) the dependency between node Ni and node Nj. 

If SEi is lower than CODij, then the beginning time of Nj coincides with the completion time of Ni. 

Otherwise, the development of Nj can begin earlier: the blue line relates SEi to the completion time of Ni 

(coincident with the beginning time of Nj when SODij=1). The yellow, red, and green parabolas 

correspond respectively to SODij=0.7, SODij=0.3, SODij=0; (b) Multiple dependency of N3 from N1 and N2 

in a Gantt diagram fashion. Blue lines are the beginning times, red lines are the completion times 

(dotted=due to single dependency, continuous=actual times due to multiple dependency) 

 

The COD is the minimum level of SE of the predecessor that allows an early development of the 

successor. If the SE of the predecessor is lower than the COD, then the successor must wait until the 

predecessor is fully developed. Higher COD corresponds to higher criticality. 

For root nodes Ni, the beginning time (BTi) is 0, and the actual completion time (CTi) is computed as 

 CTi = MINITi + (100-SEi) (MAXITi-MINITi)/100 (28) 
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time 



 

Contract Number: H98230-08-D-0171    TO017, RT0036 

Report No. SERC-2012-TR-035 

December 31, 2012 

UNCLASSIFIED 

62 

That is, depending on its SE. For nodes having a single predecessor, the beginning time is computed 

according to the function shown in Figure 35 (a): if SEi < CODij, then BTj=CTi. Otherwise, BTj is computed 

as 

 
BTj = a SEi

2 + (-a (100+CODij)+(B-D)/(100-CODij)) SEi+(100 D-B CODij)/(100-

CODij)+100aCODij 
(29) 

Where B is the minimum actual completion time for node Ni, D is the completion time of node Ni 

corresponding to CODij, and a is equal to (1-SODij) (D-B)/(100-CODij)
2. This formulation corresponds to 

the parabolas in Figure 35 (a), and guarantees that node Nj cannot have a beginning time lower than the 

minimum completion time of node Ni. 

Given a development time of node Nj equal to  

 DTj = MINITj + (100-SEj) (MAXITj-MINITj)/100 (30) 

that is a linear relationship between the SE of a node and its development time, the completion time is  

 CTj = Max(BTj + DTj, CTi + SODij DTj) (31) 

The first term is the completion time that node Nj would have starting at BTj and not having any 

dependency from Ni. However, the development time, added to the anticipated beginning time, could 

result in the successor node Nj being fully developed before the completion of the predecessor node Ni. 

Therefore, the second term accounts for this dependency, stating that node Nj cannot complete its 

development before a certain amount of time after the completion of node Ni elapses (this amount of 

time being dependent on SODij and development time of Nj). Equations (30) and (31) are also used to 

compute the minimum and the maximum completion time for node Nj. 

For nodes having multiple predecessors, the beginning time is computed as the average of the beginning 

times given by each dependency. Even if a node has got a critical dependency from one or more 

predecessors, it can still begin its development based on the dependency from other nodes. Criticality, 

however, affects the completion time. Using the average, instead than the minimum, prevents a single 

predecessor from critically influence the beginning time. The completion time is the maximum of the 

completion times given by each dependency.  

 

3.5.2.2 Application 

The method has been tested with simple networks to get an insight into the result attainable through 

this analysis. A deterministic analysis of a five-node network is reported in Table 6 (matrices for the 

network are stated below). 
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Table 6. Preliminary results with DDNA method. BT=Beginning Time. CT=Completion Time 

Self-effectiveness BT1 CT1  BT2 CT2 BT3 CT3 BT4 CT4 BT5 CT5 

[100 100 100 100 

100] 
0 7 0 10 

8.5 16 0 5 10.5 
24 

[20 100 100 100 

100] 
0 11  0  10 

10.7 17.4 0 5 11.2 
25.4 

[100 20 100 100 

100] 
0 7 0 18 

12.5 24 0 5 14.5 
32 

[100 100 20 100 

100] 
0 7 0 10 

8.5 25.6 0 5 16.74 
36.48 

[100 100 100 20 

100] 
0 7 0 10 

8.5 16 0 13 14.56 
24 

[100 100 100 100 

20] 
0 7 0 10 

8.5 16 0 5 10.5 
33.6 

[10 10 100 100 

100] 
0 11.5 0 19 

15.25 25 0 5 15 
33 

[90 10 100 10 

100] 
0 7.5 0 19 

13.19 25 0 14 19.5 
33 

 

Various observations can be done even with this few results: for example, the high SOD between nodes 

N4 and N5, and N3 and N5 causes N5 to have a longer development than N3, even when N3 starts to be 

developed later. Also, the capability of the SoS to partially recover from delays is evident, above all 

when delays strike the root nodes, and successor nodes have low SOD (so they can begin their 

development, adding partial capability to the overall SoS). In PERT/CPM analysis, a delay on a critical 

path would never be recovered, nor the analysis would account for the possibility that the System-of-

System could be partially developed in the meantime.  

 

3.5.3 CONCLUSIONS AND FUTURE WORK 

In this section, two methods for the analysis of the effect of dependencies between the components of 

a SoS have been presented. Functional Dependency Network Analysis is applicable to operational 

networks, and Development Dependency Network Analysis is applicable to development networks. 

FDNA quantifies the effect of the dependencies on the operability, and DDNA quantifies the effect of the 

dependencies on the development time. Both techniques can identify the most critical nodes and 

dependencies, and their effect on the operability or development of successor nodes, and can compare 

different architectures. The analysis can be deterministic or probabilistic, and be used to analyze specific 

or global operability and development behavior. The relationship between performance and operability 

(or performance and time), and the use of a graph description allows these methods to deal with 
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problems of different nature and various fields of application: for example, complex aerospace systems, 

design schedule, industrial production, social relationships can be analyzed by FDNA and DDNA. 

However, even if both methods are generally applicable to any SoS that can be represented by an 

operational or development network, virtual SoS (meaning that each component systems is completely 

independent and is not even partially designed according to the goals of the entire SoS), especially if 

asynchronous, are hard to treat with such methods, since the SOD and COD of the dependencies would 

be difficult to evaluate, and could change over time. 

Those methods are required to account for typical traits of SoS: complexity, size, partial autonomy in 

development and operability of the component systems, emergent behavior caused by the complex 

relationships between the systems. 

Output of FDNA and DDNA gives a detailed insight into the effects of dependencies, underlining 

unintuitive emergent behavior of the SoS, as described in the examples. FDNA can quantify the 

resilience of a SoS, and evaluate different architectures with respect to their operability when degraded 

functionality arises. DDNA uses the properties of dependencies (strength and criticality) to assess the 

development time, and the effect of delays on the development, more realistically than PERT/CPM. 

When criticality is not reached, partial development of a system can begin before a predecessor is 

complete. DDNA is able to capture the capability of a network to absorb a delay even along the critical 

path and is also suitable to assess partial capabilities available during the development of a SoS. 

However, both methods require many input data: strength and criticality of each dependency in the 

networks has to be evaluated (by experts, or getting data from simulations, or just using reasonable 

values), as well as the possible shape of the network. For DDNA, the minimum and maximum 

development time for each system are further required inputs. 

Potential future work will address the following: 

 FDNA analysis has to be tested with larger networks, featuring complex interdependencies 

between component systems; the results can be compared to those of other analysis techniques 

and metrics, looking for patterns and characteristics relating the features of nodes, links, and 

architecture of networks (like degree, centrality, weights) to the outcomes of FDNA. 

 DDNA analysis is very promising: different shapes for the functions relating the development 

time of dependent systems can be tested. Also, DDNA will be directly compared to PERT/CPM 

analysis. Stochastic analysis, though very complex, can be added to this method, in the same 

way as it has been executed in FDNA. However, the two most important improvements that will 

be added to this technique involve a tool for optimization vs. cost analysis, similar to that of 

CPM, and a metric to asses partial capabilities achieved by the SoS during the development of its 

components. 

 For both methods, analysis of data from SoS design found in literature, and comparison with the 

output from the methods will be performed. In the meanwhile, an Agent Based Model has been 

developed to represent a naval warfare SoS, and is currently being used to obtain the required 

input for FDNA. 
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3.6 ARCHITECTURE EVOLUTION STRATEGIES ANALYSIS USING COLORED PETRI NETS 

The method described in this section employs Colored Petri Nets (CPN), a powerful discrete event 

dynamic simulation tool, to model, simulate and evaluate the existing and evolving architectures. 

However, it is unrealistic to improve performance without considering the cost of architecture 

evolutions. Research in this section regards complexity as an indicator of the architecture evolving cost. 

Compared to other complexity metrics, dynamic complexity is included in the complexity metric in this 

section Eventually, an appropriate evolution choice could be achieved by examining the tradeoff space 

between complexity and performance. This approach is illustrated with a conceptual SoS problem. 

 

 

3.6.1 INTRODUCTION 

An architecture is defined as the structure of components, their relationships, and the principles and 

guidelines governing their design evolution over time (Defense, May 2009). The architecture of an 

System of systems (SoS) aims to provide a shared persistent representation of the technical framework 

that guides SoS evolution (Dahmann, Rebovich, & Lowry, May 2011). However, due to the changes in 

capability and performance objectives, interests of different stakeholders, technology improvements, 

and unanticipated situations, existing architectures may need to evolve to meet new capability 

requirements and constraints. The development and evolution of SoS architecture has been regarded as 

one of the core elements in the SoS system engineering (SE) guide (Dahmann, Rebovich, & Lowry, May 

2011) (OUSD(AT&L), August 2008), but remains a challenge because of the complex interactions that 

exist between SoS constituent entities. Thus, adequate tools are needed in capturing these 

interdependencies and supporting informed decisions on architectural evolutions. 

 

Diverse sources of changes drive the evolution of SoS architectures through different dimensions. 

Mangino (Mangino, Bolczak, & Simons, March 2008) identified two dimensions to evolve; organizational 

and technical. The organizational dimension mainly includes identification of roles for those different 

stakeholders, while the technical dimension describes the paths of systems/functions, data access, and 

information technology (IT) infrastructures. Research in this section focuses on technical dimensions, 

especially those from a system perspective such as adding new systems or functions.  

 

Research work in this section attempts to answer these questions through a simulation framework that 

allows for these tradeoffs and architectural changes to be quantified. Colored Petri Nets (CPN), a 

powerful discrete event dynamic simulation tool, is used to model, simulate, and evaluate existing and 

evolving architectures. CPN has been extensively employed by Levis (Wagenhals & Levis, 2008) to model 

and evaluate military architectures because it can express executable architectures that correspond to 

static equivalents represented by static diagrams such as unified modelling language (UML). Reesarch in 

this section builds on that work to include architectural complexity analysis, a key driver of cost in 

architecture evolution. CPNs can be used to address evolving architectural complexities and 
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performance; exploration of the tradeoff space that balances complexity and performance allows for 

informed decision-making in the evolution of SoS architectures. 

 

3.6.2 BACKGROUND 

Architecture modeling furnishes abstractions to manage complexities, allowing engineers to visualize a 

proposed system, analyze the problem domain, and describe and specify the architecture for the 

solution domain (Wang & Dagli, 2011). The Department of Defense (DoD) has developed an Architecture 

Framework (DoDAF) (Defense, May 2009) to provide support and guideline for architecture 

development, and has gained great attentions and applications (NextGen Air Transportation System 

Enterprise Architecture, July 2007). In order to further simplify the process of verification, validation and 

evaluation of the architectures, executable architecting was developed. Wagenhals and Levis 

(Wagenhals & Levis, 2008) proposed an executable CPN model to simulate and evaluate a service 

oriented architecture. Wang and Dagli (Wang & Dagli, 2011) integrated system modeling language 

(SysML) and CPN into model-driven systems development to create a structured architecture design 

process. Griending and Mavris (Griending & Mavris, 2011) summarized four common approaches for SoS 

executable architecting, which are Markov chains, Petri nets, system dynamics models and 

mathematical graphs. Agent Based Modeling(ABM) is another popular choice for dynamic architecture 

modeling. DeStefano (DeStefano, 2004) utilized ABM to create an executable model of a weapon 

architecture. Each of these methods possesses its own advantages and disadvantages. ABM is suitable 

for representing an environment composed of interactive parties, but it suffers from computational 

workload. CPN’s high level approach to describing models negates the need for large amounts of 

detailed computations and provides values for understanding the dynamic behavior of a system. In this 

section, we choose CPN to model the functional architectures for purposes of 1) matching the static 

architecture to executable architecture in an easy way 2) keeping the architecture modeling in an 

abstract and high level 3) expressing and observing the dynamic and concurrent operations. 

 

The Federal Aviation Administration (FAA) has large efforts to study architectural evolution of the 

NextGen Air Transportation System (Mangino, Bolczak, & Simons, March 2008). Organizational and 

technical dimensions of System Wide Information Management (SWIM) architecture evolution have 

been presented and divided into five sub-dimensions. Organizational dimension includes SWIM 

environment and Communities of Interest (COIs). Technical dimension consists of net-enabled services 

and data, service and data access, as well as IT infrastructure and core services. Likewise, EuroControl 

developed evolution plan of logical architecture for Air Transportation Management (ATM) driven by the 

need for increased system performance (European Organization for the Safety of Air Navigation, 2007). 

It mentioned a couple of ways to achieve the evolving performance such as increasing resources, 

adopting new concepts of operation, incorporating new technologies, etc. Compared to these 

explorations by organizations, others focus more on one dimension of architecture evolution. For 

example, Jain (Jain, June 2011) proposed a BPMN model-based structure ArchEE to make informed 

evolution decisions of mission oriented IT architectures. Research in this section instead aims to 

facilitate evolution decision making for functional architectures.  
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Complexity is an increasingly important aspect of SoS development, and has resulted in much research. 

Kinnunen (Kinnunen, Feb.2006) gave a great summary of existing complexity metrics and brought up an 

interface complexity multiplier (ICM) for architecture complexity measurements, including distance, 

volume of interchange, quality requirements, reliability and such kind of properties to stress the 

criticality of interface in an SoS. Domercant (Domercant & Mavris, 2010) combined three different 

complexity metrics together to demonstrate three aspects of SoS architecture, that being: system and 

functional, interface and structure aspects respectively. However, these complexity metrics primarily 

focus on the static structure and information. Petri Nets offer a framework to address the complexity of 

system operations and interactions. Arteta (Arteta & Giachetti, May 2004) addressed business process 

complexity based on state space probability using Petri net. Ammar (Ammar, Nikzadeh, & Dugan, June 

2001) quantified an overall complexity of a software system encompassing both static and dynamic 

aspects using the dynamic property of CPN. Fry (Fry & DeLaurentis, June 2011) extended Ammar’s work 

to an SoS context. Static complexity captures the degree of transitions while dynamic complexity 

computes the complexity of the operating functionalities and concurrent activities through obtaining 

information from the execution of CPN model. Thus not only the static structure of an SoS can be 

expressed, the dynamic interactions and operations of systems could also be illustrated. From this point 

of view, research in this section employs this complexity metric and makes some extension.  

 

3.6.3 PROPOSED APPROACH 

This section describes a simulation framework that addresses SoS performance and complexity. Neither 

architecture modelling techniques nor complexity metrics are new. However, the unique contribution is 

the integration of performance and complexity in the same framework to guide the architecture 

evolution. 

 

3.6.3.1 Colored Petri Nets Modeling 

Petri nets can cope with dynamic processes and concurrent events, and express the information flow of 

systems through use of circle places, rectangle transitions, directional arcs and dot tokens. Colored Petri 

net extends Petri net by distinguishing tokens through definitions of different data types called color 

sets, which provides the possibility of creating compact models (Jensen, Kristensen, & Wells, 2007). CPN 

are usually accompanied by temporal, hierarchical and stochastic features.  

 

The architecture modeling process can be separated into three steps -- analysis phase, synthesis phase 

and evaluation phase (Kasse Initiatives, 2004), as shown in Figure 36. The analysis phase depicts the 

static representatives of the functional and physical architectures. The first task is to, create a functional 

representation of an SoS architecture; the second task seeks to identify available systems for alignment 

to specific functionality needs. On the basis of that, diverse architecture alternatives can be formed and 

selected. The synthesis phase intends to build relative CPN models with transitions as expression of 

functions, using the static functional representations as a guideline. The evaluation phase will measure 
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the performance and cost, which utilizes complexity as an indicator. In fact, SoS might have multiple 

capability and performance objectives; however, the method in this section simply selects system 

response time as performance indicator to illustrate the methodology.  

 

 

Figure 36. Architecture modeling process 

 

 

3.6.3.2 Complexity Measurement 

The overall complexity calculation contains static, functional and concurrency complexity (Fry & 

DeLaurentis, June 2011), the latter two constituting the dynamic complexity. Since the transitions in a 

CPN model reflect the functionalities of an SoS architecture, all the three metrics will center on 

transitions and associated paths. Static complexity stresses the topological structure of architecture. The 

transitions are divided into two groups motivated by coupling complexity calculation in (Stuart, 

Mattikalli, DeLaurentis, & Shah, Sept.2011), one is the transition sets comprising transition invariant (T 

invariant) while the other covers the rest transitions. T invariant indicates a cycle in the state 

reachability graph, which means that the firing of transitions in T invariant will lead to system returning 

to the state before the series of firing. The reason for employing T invariant rests on possible added 

complexity due to functional cycle with certain constraints. Basically this metric counts the total number 

of input and output places connected to the transition. 

 
1 1 1

l m n

k i j

k i j

SCPX st d d
  

     (32) 

 

In the above equation,
kst  represents size of the kth T invariant, 

id  is the degree of transition i that in the 

T invariant and jd  is the degree of transition j that is not in the T invariant. Since this metric is based on 

static structure, it can be computed without firing CPN model.  
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Functional complexity addresses complexity emerging from dynamic operations. In addition to 

measuring firing probability of a given transition as Ammar (Ammar, Nikzadeh, & Dugan, June 2001) did, 

research in this section accounts for the possibility of different scenarios which might lead to different 

functionalities being executed. For example, in a military context, different backgrounds or situations 

might result in the employment of completely different strategies. In a warfare scenario, a sensed threat 

needs to be removed as soon as possible while during peace time, contacts might be required or 

disruptions will be used instead of destroy. As such, each of these scenarios uses a specific set of 

functionalities to generate an associated transition path, that will be given a weight provided by experts. 

 
1 1

( ( ))
n m

k i i

k i

FCPX d p
 

   (33) 

 

where 
k  means the weight of the kth path and 

ip  is the probability of transition i being fired, which can 

be obtained by dividing the number of times each transition is fired by the number of total firings. These 

firings could be collected automatically during the simulation execution.  

 

Concurrency complexity illustrates another aspect of dynamic behaviors. Concurrent processes, usually 

associated with resource allocation, occur frequently in SoS operation. A simple example is a sensor 

system with multiple sensors working parallel to search for a target threat. The added complexity from 

one sensor performing to multiple sensors working includes not only the new assigned sensors 

themselves but also the increased interactions and communications between sensors and measures 

dealing with resource conflicts as well.  
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   (34) 

 

where iccf  is the concurrency factor representing maximum number of other transitions enabled 

concurrently with transition i across the entire simulation run (Fry & DeLaurentis, June 2011) and 
if  is 

the number of times transition i fired. 

 

The static, functional and concurrency complexity are combined to form the overall complexity metric 

by adding them together based on two assumptions: the inclusion of transition degree in each 

complexity metric partially eliminates scale differences; the three metrics are equally important and 

hold tolerable overlap. 

 CPX SCPX FCPX CCPX    (35) 
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3.6.4 CASE STUDY 

The Littoral Combat Ship (LCS) Surface Warfare (SUW) module, one module of LCS naval warfare 

package, is chosen as a demonstration example. To avoid misunderstanding, “LCS” in this section refers 

to the LCS seaframe while the LCS package represents the whole naval warfare package involving LCS 

seaframe. SUW is designed to detect and engage multiple surface contacts in a littoral environment. It 

strengthens the core LCS seaframe capability by adding an air-to-surface missile armed aircraft and a 

surface-to-surface missile capability (Jacobson, Sept.2010). Strictly speaking, SUW is not qualified as an 

SoS, but it nevertheless resembles the SoS attribute that systems are put together to provide 

capabilities. According to Jacobson’s work (Jacobson, Sept.2010), a basic functional representation of 

SUW can be created as in Figure 37 and available systems for each function are also shown in the figure. 

As shown in Figure 37, the functions of SUW used in this example are kept in a high level, from search, 

to track, to engage, to assess, no more detailed information is used. The abstraction prevents struggling 

with too many details at the beginning of architecture design process. 

 

 
 

Figure 37. Functional representation of SUW architecture 

 

It is assumed that the current architecture alternative only includes LCS and its NLOS missile system. 

Two possible evolving architectures are demonstrated in Figure 38, as alternatives to improve 

performance following the technical dimension previously mentioned. One is equipped with the 

helicopter MH-60R and its Hellfire missile system, while the other one has both MH-60R and UAV with 

their respective Hellfire and LOGIR missile systems.  
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Figure 38. Existing and evolving architecture alternatives 

After accomplishing analysis phase of architecture modeling, we are able to proceed to CPN modeling 

for the dynamic architecture description. Each function in the architecture corresponds to a transition in 

the CPN. The model of the existing architecture is displayed in Figure 39. 

 

 

Figure 39. CPN model for existing architecture 

System response time is selected as a measure of performance. The model has three primary inputs: 1) 

process time of each function and 2) detection probability of sensors and kill probability of weapon 

systems and 3) missile carrying capability for each aircraft. These probabilities and capabilities are based 

on Jacobson’s thesis (Jacobson, Sept.2010). Another input is the number of threats which, if increasing, 

will lead to increasing system response time. As shown in Table 7 and Figure 40 (performance and 

complexity with 20 incoming threats), existing architecture0 with LCS solely has the least complexity 

whereas largest system response time(worst performance); participation of MH-60R reduces the system 

response time meanwhile increases certain amount of complexity; architecture2 with both MH-60R and 

UAV apparently has the best performance but maximum complexity. When the number of threats 

reaches the maximum that SUW can handle, the operations and interactions of systems will not change, 
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corresponding to a stagnation in complexity and impact in performance. In detail, when there are 20 

threats coming together, existing architecture (architecture0) with a complexity value of 66 has average 

system response time 135.6, while architecture1 has complexity of 90 and system response time of 

127.1, comparing to architecture2 with complexity of 118 and system response time of 119.3. Again, 

while there is no shortage of complexity metrics, the one applied here was selected because of its ease 

of integration into the framework and its inclusion of dynamic behaviors, but can be replaced with more 

comprehensive metrics in the future. Additionally, this metric is employed to distinguish the three 

different architectures. Strictly speaking, the simplest complexity metric as the total number of 

components should work here. As long as specific requirements, such as required system response time 

for successful engagement, are given, decision makers can make proper choices on questions like which 

architecture might be more suitable to the future environment and what kind of evolution is necessary 

and sufficient based on the tradeoff. With the analysis approach demonstrated, more evolution 

possibilities can be involved and simulated in the future to improve fidelity of the decision surfaces.  

 

 

Figure 40. Tradeoff space between performance and complexity 

 

Table 7. System performance and complexity calculation result 
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4 34 21.66 14.15 69.81 98.1 

8 34 21.67 16.51 72.18 114.7 

12 34 21.66 17.41 73.07 123.6 

16 34 21.66 13.03 68.69 131.8 

20 34 21.66 10.40 66.06 135.6 
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1 

4 44 22.95 23.44 90.39 78.1 

8 44 22.95 26.83 93.78 94.9 

12 44 22.96 27.61 94.57 108.3 

16 44 22.97 27.76 94.73 120.3 

20 44 22.97 23.44 90.41 127.1 

2 

4 58 24.21 29.06 111.27 79.9 

8 58 24.21 33.89 116.1 92.7 

12 58 24.21 35.36 117.57 102.3 

16 58 24.20 35.92 118.12 110.4 

20 58 24.20 36.12 118.32 119.3 

 

 

 

3.6.5 CONCLUSION AND FUTURE WORK 

Colored Petri Nets is adopted to construct an executable architectural model due to its ability in 

modeling dynamic processes and concurrent activities. The corresponding performance and complexity 

of alternative architectures are calculated to provide a quantitative tradeoff space for decision makers. 

As a primary contribution, the tradeoff space aids decision makers gaining a comprehensive insight of 

architecture evolution. A simplified scenario of a SUW module in LCS naval warfare package 

demonstrates the proposed approach. Results illustrate the increased complexity along with improved 

performance. Given a baseline of performance and complexity requirements, this approach would 

provide appropriate suggestions. 

 

The proposed CPN framework is regarded as an initial step (evaluation of architecture alternatives) 

towards exploring SoS architecture evolution. The ultimate goal for the research is to provide 

suggestions about when to apply which architecture to support architecture evolution based on such an 

evaluation. Specifically, short run future work will focus on three aspects. First, is to increase model 

accuracy; in addition to using Petri net to model high level architecture, agent-based modeling could be 

adopted to model the lower level of physical architecture. Second, is to increase the efficiency of 

architecture analysis; on one hand, we will take advantages of Petri net on finding critical events to 

support architecture evolution; on the other hand, we might employ optimization methods to allow a 

set of architectures performing in a shorter time to achieve the results. Third direction concentrates on 

extending complexity metrics by adding more actual information to gradually eliminate the differences 

between the complexity of models and real systems. 
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3.7 ROBUST PORTFOLIO OPTIMIZATION APPROACH TO ARCHITECTING SYSTEM OF SYSTEMS 

Current guidelines and tools for architecting SoS architectures are lacking sufficient capabilities in 

enabling effective decision-making for SoS SE practitioners. This section presents a novel decision 

analysis framework that draws upon methods from operations research and financial engineering to 

present a method of architecting a System-of-Systems (SoS) while balancing gains in SoS level 

capabilities against potential developmental risks. Work in this section extends initial frameworks 

developed under the Naval Postgraduate School Acquisition Research Program, towards SoS 

architectural management. 

 

3.7.1 INTRODUCTION 

 

The recognition of large scale conglomerations of systems as an interacting ‘System-of -Systems (SoS)’ 

has seen the need for a different set of architecting principles. The Department of Defense (DoD), for 

example, has changed its requirement centric acquisition process to now reflect a capabilities driven 

one. The change in paradigm is motivated, in part, by the evolving nature of mission objectives that 

emphasize for SoS to be adaptable and resilient to changes in mission requirements. These changing 

conditions present a difficult endeavor in balancing the uncertainty in requirements against the strategic 

nature of system architectures that are typically static investments over a long term horizon. As such, 

the recognition of managing the complexities of SoS architectures has prompted research in developing 

tools that can address the management of SoS architectural evolutions. 

  Recent efforts have attempted to address the development of SoS, by introducing a range of 

analytical methods for the design of these monolithic systems. Research by (Kotegawa, 2008)  utilizes 

graph theoretic methods with a ‘top-down’ approach to categorize SoS performance and resilience 

within the context of established network metrics. Works in by(Mane M. C., 2012) on the other hand, 

adopt an operations research (OR) perspective through concurrent engineering paradigms that seek to 

improve efficiency by reducing decision ‘handoffs’ between interdependent systems; namely between 

airline operations and aircraft design. Research by (Mane, DeLaurentis, & Frazho, 2011) pursues a 

network driven Markov perspective to SoS complexity and attempts to quantify cascading effects of 

single nodal disruptions on a network. Literature by (Garrett, 2011)has presented works on managing 

interstitial spaces for a SoS case of the Ballistic Missile Defense System [BMDS]; the work focuses on 

issues of interoperability, integration and domain interfaces through employment of graph theoretic 

and agent based methods, coupled with developed managerial and technical metrics.  

 Although the span of SoS research encompasses both ‘top down’ and ‘bottom up’ strategies, 

there is still a great need for further development of methods to design and ultimately acquire general 

SoS constructs under varying conditions due to the span of disciplines that typical SoS constitute. The 

surveyed methods do not present a decision or ‘portfolio’ based approach that allows for identification 

of optimal collections of systems. This section complements current research efforts in development of 

SoS architectures by introducing a decision tool via a robust portfolio optimization framework. The 

generalized representation allows for a SoS to be modeled as an interconnected network hierarchy of 
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systems with each system being represented by a node. The interconnected capabilities and 

requirements of these ‘nodes’ allows for mathematical programming techniques to be used in 

leveraging performance of SoS under conditions of changing requirements, against associated 

interconnectivity risks. 

 

3.7.2 BACKGROUND AND MOTIVATION 

 

Systems engineering has recently benefited from the introduction of operations research driven 

optimization methods, to developing SoS architectures. Robust optimization is a relatively recent field in 

operations research, which finds its roots in control theory and addresses the need to make decisions 

under conditions of uncertainty. Real world systems are subject to inherent uncertainty that manifests 

itself typically as data and parametric uncertainty. Robust formulations address this inherent uncertainty 

by generating solutions that are resilient to changes in the data and/or governing parameters of the 

system. Deterministic methods are traditionally focused on finding the optimal solution of a given 

optimization problem formulation subject to an assumed set of ‘perfect’ data. Purely deterministic 

systems, however, may have very poor response when one or more uncertainties value change. In a SoS, 

this translates to potentially cascading modes of failure that can propagate throughout the SoS network, 

resulting in costly degradation in performance, capability and increased cost.  

 

 

 

 

Robust Optimization  

 

Robust formulation solutions on the other hand, remain near optimal even if the data characteristics 

change. Robust optimization strategies seek to select appropriate uncertainty sets or alternative 

parameterizations of the deterministic optimization problem to better deal with robustness issues in the 

system.  Early works by (Dantzig, 1955)have examined formulations for uncertain linear systems of 

equations. Several formulations have introduced uncertainty in linear integer problems for resource 

allocation and network flow problems 7]. Further developed formulations in robustness include Soyster , 

Ben-Tal Nemirovski (Ben-Tal, 1999), and Chance Constrained Programming (CCP) (Charnes, 1959) to 

name a few. These methods deal with issues on the inclusion and selection of uncertainty sets that 

transcribe the level and characteristics of uncertainty in the data and/or parameters of the system. 

These can be polytopic or elliptical sets that are normally used to parameterize uncertainty, resulting in 

conic and semidefinite optimization problems. Also, the various formulations seek to leverage a finite 

’slack’ in the system against constraint violations that would result from a given slack budget.  

 

Investment Portfolio: Mean Variance Optimization  
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Financial engineering involves the construction of portfolio investment strategies that balances 

expected return against risk for a basket of potential investment instruments subject to the constraints 

of available financial resources. A large part of these strategies comes from the construction of 

portfolios using optimization methods often found in operations research and controls engineering 

circles. The central idea in portfolio management is the balance of risk versus reward where information 

on the risk averseness of the investor and volatility in the returns of potential investments are reflected 

in the portfolio’s construction. These measures of volatility are typically generated from past data about 

the asset (s) of interest. In the context of an SoS, the expected returns correspond to a desired capability 

from an investment in a system, and the variance (covariance) can be attributed to developmental or 

operational risks that arise both from the inherent dynamic of the chosen system, and its interactions 

with connected systems. 

 

Mean variance optimization (MVO) is a much celebrated financial portfolio theory developed 

by(Markowitz, 1952) that provides a way to select a diverse portfolio of assets in a manner that 

leverages risk against reward. Several variations of the formulation have appeared since its introduction 

in the 1950s, but the essential idea is to generate an optimal efficient risk versus rewards frontier. The 

motivation is to provide an investor with the means to select an optimal portfolio based on the 

investor’s preference of risk tolerance. The general form of the mean variance optimization problem is: 

 

    max
TT

i i ij jx x x  
        (36) 

 

subject to: 
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          (37) 
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           (38) 

 

The mathematical model shown by Equations (36–38) presents the formulation of a traditional 

single-stage optimization problem that is typical of operations research and financial engineering circles. 

Here, xi is the proportion of funds invested in asset i, μi is the expected return for fund i and λ is the risk 

averseness constant measure. Σij is the symmetric covariance matrix that contains information on how 

asset pricing moves together. This matrix is positive definite since variance is always a positive quantity 

making it a quadratic programming (QP) problem, for which very efficient solution methods exist. 

Equation (36) is the objective function that seeks to maximize the expected return of the portfolio and 

minimize its risk.  Equation (37) simply ensures that the portfolio fractions sum to a whole and Equation 

(38) enforces a non-negativity condition of the decision variables - indicative of a no shorting policy.  

 

Robust Mean Variance Optimization 
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It is well known in financial engineering circles that the Markowitz formulation is sensitive to changes in 

estimated entries of the covariance matrix, Σ, (system interdependencies) and expected return, μ, 

(system performance). The sensitivity due to suboptimal expected returns and covariance estimations 

can result in highly inefficient portfolios due to errors in estimation or market shifts. Such sensitivity 

issues have prompted the development of a variety of robust methods in portfolio analysis to ensure 

that the chosen portfolio of assets are stable against potential changes in market conditions/expected 

volatility.  

 

The SoS investment portfolio formulation in Equations (36-38) can be made robust through use 

of a range of robust optimization techniques. Recent research has adopted robust optimization 

approaches such as Semi-Definite Programming (SDP) and Conic Programming approaches, among many 

others, to generate robust portfolios that are protected against uncertainties in data and relevant 

estimated quantities. The reformulation allows for possible changes in estimated quantities (e.g., due to 

market shifts in pricing, volatility, system interdependencies) to be accounted more explicitly as 

uncertainty sets.  The resulting portfolio allocation will not change appreciably even if estimated 

quantities of risk or payoffs change (within prescribed limits). 

In the context of an SoS problem, the use of a robust formulation translates to reduced costs 

associated with capability estimation errors, development time volatility, and changing requirement 

conditions. In this research, we adapt a Semi-Definite Programming (SDP) approach as developed 

byTutuncu and Koenig (Tutuncu, 2004) that addresses general uncertainty in the expected returns, and 

covariance matrix, Σ, and the Bertsimas-Sim (Bertsimas, 2004) approach to dealing with uncertainties in 

particular linear constraints.  Work by Tutuncu and Koenig (Tutuncu, 2004) present the following robust 

formulation for the mean-variance portfolio problem: 

       maximize           
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Robust Constraints: The Bertsimas-Sim Approach 

 

The robust portfolio method shown above address uncertainty in the covariance matrix and expected 

returns but not in general linear constraints. The Bertsimas-Sim method on the other hand is a robust 

linear formulation that addresses parametric data uncertainty in linear constraints without excessively 

penalizing the objective function. The method allows for the control of probability of constraint 

violations and the effect of the degree of conservatism on the objective function, also known as the 

price of robustness. Its linear formulation makes it naturally extendable to discrete optimization 

problems and is a very attractive method for application to the current (linear) SoS architectural 

framework. The formulation starts by addressing the general inequality constraints in a traditional linear 

programming problem; Ax ≤ b. Here, a subset of matrix Aij contains uncertain entries (derived from data) 

that exist within symmetric intervals – i.e. belong to set Ji and 
ˆ ˆ[ , ]ij ij ij ija a a a 

.A conservatism 

parameter, Γi, is used to adjust the degree of conservatism in protection of the uncertain linear 

constraints from infeasibility, Γi takes values in the interval [0, |Ji|] where Ji represents the set of Aij 

coefficients that are uncertain and is not necessarily integer. Introduction of uncertainty in the 

coefficients results in a nonlinear problem formulation. However, a proof is derived in literature [10] , 

that converts the nonlinear form into the following linear optimization problem: 

 
Tmaximize          c x           (44) 

subject to: 

 

A
i

ij j i i ij i

j j J

x z p b


    
         (45)  

ˆ
i ij ij jz p a y 

          (46) 

j j jy x y  
          (47) 

j j jl x y 
          (48) 
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, , 0ij ij ijp y z 
          (49) 

 

The linear formulation shown in the above equations preserves sparsity of the original Aij matrix - an 

attractive feature for computational efficiency. Equation (44) is the objective function that maximizes a 

general linear function. Equations (45-49) are the robust version of linear inequality constraints where Γi 

is the constant that dictates the level of conservatism in the constraint. â ij in Equation (45) is the 

uncertainty associated with the j-th entry of the i-th constraint in the A matrix. The SoS architectural 

formulation, as will be presented, provides naturally sparse systems of equations and complements 

sparsity advantages in the Bertsimas-Sim formulation. In general, linear formulations are amenable to 

highly efficient solvers that can handle very large scale problems with ease.  

Various robust formulations attempt to address uncertainty through Monte Carlo sampling, conic 

programming and semidefinite programming approaches - these are more computationally expensive to 

solve than the linear formulation shown above. The Bertsimas-Sim formulation as shown, does not take 

correlation effects into consideration. Here, the uncertainties are assumed to be independent sets that 

exist separately from one another. However, work developed by Bertsimas and Sim also includes 

alternate (linear) formulations that extend the formulation also account for correlated data. This 

naturally makes it applicable to an even wider range of   problems - including asset allocation and 

investment problems such as the mean-variance portfolio optimization problem.  

 

3.7.3 ROBUST PORTFOLIO APPROACH: SOS NETWORK MODELING 

In this research, a generic, operational SoS architecture is modelled as an interconnected set of 

discrete nodes; each having a finite set of inputs and outputs. The interconnectivities between nodes 

are established to facilitate the fulfilment of individual node requirements by allowing for node 

capabilities (outputs) from existing nodes to connect and consequently fulfil requirements (inputs) of 

any compatible node requiring a particular capability to function. Overarching capabilities are provided 

by nodes that directly contribute to these required capabilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: (a) SoS hierarchy (b) nodal behaviors 
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Figure 40 (a & b) show a generalized representation of a SoS which has interdependencies between 

constituent systems, across multiple layers of the hierarchical structure. The hierarchical structure 

transcends the operational layers of the SoS construct. Each node (system) is connected to other nodes 

on the network, in accordance with the set of requirements needed for them to interdependently 

operate. The connections between nodes are also governed by a set of interaction rules. The idea is to 

model basic, aggregate interactions between systems within a SoS construct as relatively simple, nodal 

behaviors that are applicable to a wide variety of types of inter-system connections. While not 

exhaustive, the combinations of these nodal behaviors as modeling rules can cover a large set of real 

world inter-system interactions. This is in line with insights that an SoS SE practitioner may have when 

architecting complex, larger scale systems at a higher architectural level. 

 

Figure (40b) shows the five most intuitive nodal interactions of: 

 

  Capability: Nodes have finite supply of capabilities that are limited by quantity and number of 

connections. 

 

  Requirements: Nodes have requirements to enable inherent capabilities. Requirements are fulfilled 

by receiving connections from other nodes that possess a capability to fulfill said requirements.  

 

  Relay: Nodes can have the ability to relay capabilities between adjacent nodes. This can include 

excess input of capabilities that are used to fulfill node requirements.  

 

  Bandwidth: Total amount of capabilities and number of connections between nodes are bounded by 

‘bandwidth’ of the connection linkages between systems.   

 

  Compatibility: Nodes can only connect to other nodes based on a pre–established set of connection 

rules. 

 

The performance of the SoS is related to the ability of the connected network of individual systems to 

fulfill overarching core objectives. The SoS wide performance is quantified by the capability of nodes 

that most directly contribute to the core objectives. It is assumed that these core objectives can be at 

least, approximated quantitatively.  

 

Robust Investment Portfolio for SoS 

 

The SoS investment model is posed as a mean variance investment problem. The objective here 

is to maximize the expected network performance in fulfilling key overarching objectives whilst 

minimizing acceptable levels of developmental risk and cost. Selection of system is constrained by 

fulfilling generic connectivity requirements between constituent systems, as defined earlier. The 

resulting mathematical program for the SoS investment problem is given by the following equations: 
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, {integer, real} F

cij qx x          (62) 

 

The current form for the investment model as shown in Equations (50-62) is known as a Mixed 

Integer Quadratic Program (MIQP) and is based on the mean variance formulation that seeks to 

generate optimal portfolios that balance potential expected rewards against risk. Equation (50) is the 

objective function that seeks to maximize overall SoS capability while minimizing cost and development 

risk. The first term in the objective function normalizes the ‘capabilities’ by dividing the potential 

capability of available systems, Sq , by a baseline performance, Rc. The capability gain here assumes a 

linear form.  A weighting factor, wc, is used to weight the importance of each capability that contributes 

directly to the objective function. This vector of weighting factors can be determined through design 

consensus as to prioritization of capability priorities. 

  Risk is captured through the variance term and moderated by the risk aversion factor, λ that 

reflects the investor’s risk averseness preference. The negative sign indicates a penalization of the 

objective function, given the selection of individual systems in the SoS portfolio of systems, and 

attempts to balance the gains from selecting individual systems with the accumulated risks from them. 

An alternate formulation of introducing risks involves the inclusion of the quadratic risk term in the 

constraints as xΣx≤σ, instead of in the objective function, where σ is the total variance (risk) in the 

portfolio. In the context of a SoS investment framework, the risk here refers to project developmental 

time of and between interconnected systems; the risk in delays can be related to extra work-hours and 

thus be quantified as an explicit cost.  For new, yet to be designed systems, estimations of the 

distribution curve for development time are done by design intuition and follow traditional project 

management guidelines (e.g. PERT/CPM) in systems engineering as listed in literature  

Equation (51) is the capacity limit at each node. This ensures that the individual capabilities at 

each node do not provide more capability to other parts of the SoS network than what is available at the 

respective node. For example, the selection of a system with communications capabilities should mean 

that the total bandwidth of data that is being used by other interfacing systems should not exceed the 

inherent limits of the communications system itself. Equation (52) ensures that requirement conditions 

are met for each node and permits the availability of excess capability to be present at the node.  

Equation (53) enforces compatibility constraints in the form of binary logic. For example, if some of the 

systems represent the choice of engine system to a car; it is not feasible that two 200hp engines may be 

selected to fulfill the requirements of 400hp. Instead, a restriction is placed such that only one engine 

may be selected and that the chosen engine must supply 400hp. The engine constraints would thus be 

written as xengine1 +xengine2 = 1; since the decision variables are binary, there can be only a selection of one 

or the other for the constraint to be satisfied.  

The restrictions for a SoS architecture needs user defined inputs on acceptable connectivity 

constraints I the form of number of connection between nodes.  Equations (54-56) are associated with 

connection restrictions between nodes that follows a ‘Big-M’ formulation The Big-M formulation 

establishes a logic condition where if the entry of xcij is non-zero, then the corresponding entry of xij 

must be nonzero (in this case, a value of 1). The Big-M thus allows for the tracking of connections 

between systems and permits control of the number of connections to individual systems as well 

through the adjacency variable xij. The summation in Equation (56) enforces the maximum allowable 
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number of links for each selected system. Equation (57) is a flow balance equation that ensures that 

‘capability flows’ about the interconnected network of systems are preserved (e.g. power, 

communication connectivity and bandwidth between systems). Equation (59) is the budget fraction 

equation quantified the fraction of total budget that each invested system represents. Equation (60) 

ensures that the total cost of systems acquired is within the prescribed budget. It is assumed that the 

budget is a known and fixed quantity.  Equation (61) and (62) show that the decision variables can be 

integers, binary or real numbers and is dependent on the individual system properties. 

3.7.4 EXAMPLE CASE STUDY: LITTORAL COMBAT SHIP 

The Littoral Combat Ship (LCS), shown in Fig 40, is a current system that is both developed by 

Lockheed Martin and General Dynamics for the United States Navy. The operations of the ship support 

littoral warfare with a new paradigm in naval architecture that utilizes modular systems. Each module 

corresponds to a particular set of capabilities that can be added and removed for each ship, depending 

on the requirements of the mission to be performed. The current suite of modules includes the Anti-

Submarine Warfare (ASW), Mine Warfare (MIW), Surface Warfare (SUW) and irregular warfare module 

for medical/humanitarian based missions. The LCS works in concert with other military entities that 

include UAVs, satellite systems and ground based units. Whilst the LCS platform is not strictly speaking, 

a SoS, it exhibits many salient features of one. The modularity and open connectivity allow for it to be 

redeployed with various collections of assets to fulfill an overarching capability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robust Investment Portfolio Approach 

The objective in this section is to achieve desired combat effectiveness and operational capabilities 

while minimizing cost and development risk; this is of course subject to connectivity constraints based 

on the generic nodal behaviors as listed in the preceding section. The simple LCS model inputs and 

Figure 42: Littoral Combat Ship (LCS) 
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characteristics are described in Table 8 and represent a hypothetical catalogue of systems available to 

the Navy in its pursuit of achieving desired capabilities. Although the numbers are hypothetical, the 

salient features of considering capabilities, requirements and considering risk in acquisition problem are 

still preserved. Table 8 lists systems for each of the three mission packages—ASW, MCM, SUW—along 

with an individual rating of system capabilities and requirements for the systems to operate. 

Additionally, Table 8 provides the system development time and associated acquisition costs. Systems 

that are unable to provide a particular capability (or do not have a particular requirement) have a zero 

entry. The development of these systems is based on a estimated time schedules that typically follow 

PERT/CPM practices in estimations of the distribution of development times. This aspect is captured in 

the covariance matrix shown in Table 9. 
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Table 8: LCS candidate systems 

 
 

Table 9: Development covariance matrix 
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Variable Depth 0.1 0 0 0 0 0 0 0 0 0

Multi Fcn Tow 0 0.6 0 0 0 0 0 0 0.1 0

Lightweight tow 0 0 0.2 0 0 0 0 0 0 0.2

RAMCS II 0 0 0 0.3 0.1 0 0 0 0.2 0

ALMDS (MH-60) 0 0 0 1 0.1 0 0 0 0 0.3

N-LOS Missiles 0 0 0 0 0 0.5 0.2 0 0.1 0

Griffin Missiles 0 0 0 0 0 0.2 0.3 0 0 0

Package System 1 0 0 0 0 0 0 0 0.5 0 0

Package System 2 0 0.1 0 0.2 0 0.1 0 0 0.3 0

Package System 3 0 0 0.2 0 0.3 0 0 0 0 0.2
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Figure 43 (a) Robust efficiency frontier (b) Multiple risk measures 

 

          The robust portfolio optimization formulation of Equations (50-62) is applied and solved for 

the investment problem for the LCS platform, using data from Table 8 and Table 9, resulting in the 

robust efficiency frontier and corresponding optimal portfolio of systems at each level of risk aversion, λ. 

At high levels of risk aversion (high λ values), the portfolio selection favors less risky (lower 

developmental variance) systems, but at a lower SoS wide capability level and vice versa. The method 

can be extended to the case of multiple measures of risk as shown in Figure 42(b). Here, two measures 

of risk are introduced to the optimization framework; the first reflects risks in the communications layer 

and the second, in the weapons effectiveness. Both measures are represented as covariance matrices 

with hypothetical entries,; however, these can conceivably be retrieved from quantitative measure such 

as field test/simulation data.  In Figure 42 (b), the dual measure of risk here reveals a trade-space 

topology where increasing risk aversion in either measure results in increased SoS wide performance. 

The discrete jumps in performance are attributed to the nature of the systems that are discretely 

connected to one another. 

 

Bertsimas-Sim Approach to Robust Operational Constraints 

 

The objective in this part of the synthetic case application is to identify collections or ‘portfolios’ of 

systems, chosen from a candidate list, that fulfill and overarching SoS capability set (ASW,MIW,SUW) 

whilst satisfying probabilistic constraints for specific layers of the connections between systems. Table 8 

presents extended candidate system information for the Littoral Combat Ship (LCS) operational network. 

Each candidate system has a collection of capabilities and requirements as listed; in this case, additional 

systems are available for the communications layer which is the focus of probabilistic constraints in this 

section of the research.  The individual system capabilities, as listed in columns 1-5, can be used to either 

directly fulfill an overarching SoS requirement (listed in columns 1-3), or to fulfill individual support 

system requirements (columns 4-9). Columns 6-7 are systems requirement metrics across the candidate 
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systems. Zero value entries in there columns indicate that the respective listed system does not have that 

particular system requirement to be fulfilled. In this simplified scenario, it is assumed that a 

communications layer exists where all assets in Table 1 have an ability to ‘communicate’ with one 

another in the transfer of information, subject to a path-wise cost. The objective here is to select a 

collection of assets (system) from the available list in Table 1 to that maximizes mission performance 

requirements; this comprises an equal weighting among primary SoS capabilities of the first 3 columns for 

the LCS problem. Additional constraints include the fact that only one system can be selected for each 

package with the exception of the communications packages where a total of up to two may be 

deployed. 

 

Table 10: LCS candidate systems 

 
 

The selection is subject to the performance and associated uncertainty that exists in the 

communications network of the selected assets.  Uncertainty exists in the communications and power 

capabilities of individual systems as published in columns 4 and 5 of Table 8. The values for 

communications bandwidth (column 4) and power generation (column 5) are nominal values, a, that are 

subject to uncertainties â  to form the uncertainty set of ˆ ˆ[ , ]ij ij ij ija a a a  . The uncertainty bounds, in real 

applications, can typically be estimated from designer intuition, simulation outcomes or confidence 

intervals from reported performance data. The sufficiency conditions in Equations (8) and (9) of the 

optimization formulation are adapted to their robust form using the Bertsimas-Sim formulation. The 

purpose here is to evaluate the probability of sufficiency constraint violation, given differing degrees of 

built in robustness, using the conservatism term of the robust formulation. The robustification is only 

applied to constraints of Equations (8) and (9), but can be applied to any other linear constraints in a 

general MIP problem. 

Figure 43 (a) and (b) show the SoS performance profile and ‘portfolio’ of selected assets respectively 

for the simple LCS scenario. The generation of the profile comes from the solution of the optimization 

problem as defined in Equations (7-16) for the LCS set of data, using varying conservatism values of Γi.  
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The problems were solved in the MATLAB [12] environment using YALMIP [13] interface with the Gurobi 

solver option. The simple degree of complexity in the problem results in three distinct architectures as 

shown in Figure 4 (a) and (b). The graph shows the increase in SoS performance index with a decrease in 

the level of conservatism, Γi. This is as expected, given that the increase in robustness will yield a trade-off 

between performance and conservatism. The three communications architectures have different asset 

selections that are reflected in the MCN, SUW and choice of communications systems. As the degree of 

conservatism in the SoS communications capability is reduced, the resulting system selection allows for 

the higher capacity communications system 6 to be selected, even though it bears a greater degree of 

uncertainty. This in turn allows for the selection of NLOS missiles but degrades the MCN performance to 

the selection of the RAMCS II system instead of using the ALMDS (MH-60) unit. Further reduction in 

conservatism results in the NLOS and ALMDS units to be selected, maximizing the respective SoS level 

capabilities for each package category. The choice of conservatism is typically set by the SoSE practitioner 

that may include consideration of acquisition cost. Here, the probabilistic guarantees at discrete levels of 

conservatism can be weighed against the potential acquisition costs or against the potential of further 

upgrades to the SoS architecture. The small levels of probabilistic increments are artifacts of the synthetic 

numbers used in this simplified problem.  

 

Figure 44: (a) performance profile (b) portfolio of assets 

 

3.7.5 SUMMARY AND FUTURE WORK 

 A robust portfolio optimization approach is presented that includes consideration for 

uncertainties in various aspects of the resulting SoS ‘investment’ problem. The method is applied to the 

case of a simplified LCS problem to reflect potential decisions that SoS SE practitioners can make in view 

of generated trade space efficiency frontiers that balance risk against capability and cost. The method 

includes consideration of the interconnectivities between systems, access to multiple measures of risk 

and considerations for probabilistic guarantees on connectivity.  
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 Future work in this endeavor will seek to better unify the Bertsimas-Sim and robust portfolio 

approaches within a single measure and apply the methods for multi-period portfolios where decisions 

of architecting in one time state can affect subsequent SoS architectural decisions.  

 

 

4 SUMMARY AND FUTURE RESEARCH 

 

This report has detailed the results of research, development and application of MPTs in support of SoS 

architectural artifacts. The methods enable the analysis and support of system capability development 

using defined metrics and provide a means to conduct analysis of alternatives while navigating the SoS 

decision space. These methods also simultaneously enable the identification of positive impacts of 

interdependencies (SoS level capabilities and resilience) while mitigating negative one (e.g. 

developmental delay risks). The methods are demonstrated for simplified and instructive test cases and 

have shown great promise in providing ‘value-added’ to SoS SE practitioners in navigating SoS level 

design spaces, and performing measurable actions that translate to risk mitigation and capability 

development.  

 

 
Future Research: Towards an Analytical Workbench 

 

The table presented above highlights the nature of each explored method and the required input 

metrics for applicability to particular analytical situations. The table also notes the most pertinent SoS 

artifacts, for as defined in the Wave Model, for each method. While the listed method(s) recommended 

for each relevant SoS artifact action is listed, the methods are nevertheless still applicable to other 

artifacts in other SoS artifacts, but is naturally dependent on the nature of the problem, and the 
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pertinence of the inputs/outputs as listed in the above table. For example, the FDNA/DDNA method, 

while structured for higher level SoS analysis functions, can equally be used to analyze consequences of 

network connectivities as implied for Colored Petri Nets should the pertinent data be available.  

 

The research conducted in this RT-36 epoch has accomplished the following details: 

1. Categorize types/styles of SoS architectures, metrics for SoS performance and development, and 

interdependency features that must be addressed by analysis methods. This included literature 

review with SERC projects (e.g., RT18 and RT25) but also more widely. 

2. Define and translate the meaning of metrics for the SoS context and determine which metrics 

can be computed, and under which assumptions, for each candidate analysis method, in relation 

to the SoS artifacts in the Wave Model  

3. Developed instructive synthetic examples to test the analysis methods; also, look for real case 

studies to use. We completed demonstration studies on a 5-node network sample problem 

and/or a Littoral Combat Ship scenario using five methods for interdependency analysis: 

Markov-network process, Bayesian Network, Petri Nets,  ‘ stand in redundancy’  reliability . A 

decision support method using robust portfolio optimization is also presented. We documented 

the workings of each method on the problem and reported. We also created our own case study 

and example problem based on the Littoral Combat Ship (LCS) program.  

4. Completed test cases that highlighted strengths and weaknesses of each method and couched 

the products of each method in context of the Wave Model for SoSE.  

 

Additional research under RT-44 that continues research here in RT-36 will be centered on developing 

an ‘analytic workbench’ and advancing/refining the current range of methods to better address 

interdependencies in SoS SE architecting. The workbench will consist of software tools that are, possibly, 

modular so as to enable addition of new features. The modularity will include consideration for an open-

source environment and thus requires some adaptation of current researched methods to support 

relevant open-source software considerations.  The methods support the Wave Model artifacts for SoS 

architecture proliferation as shown in the following: 
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Figure 45: SoS and Wave Model evolution 

The above Figure 1 illustrates the researched methods in a generalized context of supporting SoS 

architecture evolution. The analytical workbench would serve in the application of prior researched 

methods in supporting operational and developmental hierarchies, in accordance with the Wave Model. 

This includes decision-making involving metrics that reflect trade off among ‘illities’ of the SoS entity 

(reliability, resilience…etc.) as part of the generalized SoS capability.  The concept framework shown in 

Figure 1 also highlights the sequential application of methods that cover the range of SoS activities; this 

spans from the strategic evaluation of individual systems to the tactical aspects of change management 

and development. The cyclic nature of the shown framework reflects artifacts of the ‘Vee’ structures in 

the Wave model. 

 

4.1 WHAT CAPABILITIES WILL FUTURE RESEARCH BRING? 

 

Research during the period would also result in papers and reports that document experimentation with 

the tools on realistic test problems, with a variety of data availability and use environments. The analytic 

workbench (tools and studies) would be oriented to help practitioners to answer questions such as:  

 

 How are vulnerabilities identified and traced to architecture features and interdependence 

structure?  

 What can be done (new systems, transitioned architecture) to maximize my capability gain (or 

resilience)?  

 How to understand the alternatives in cognizance of cascading effects and dynamics?  
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 How can investments now address current needs but also longer term evolution goals? 

 

4.2 ANALYTIC WORKBENCH: VERIFICATION, DEMONSTRATION AND VALIDATION 

 

The additional research would apply the researched methods and established framework above to a 

more realistic concept problem for validation; this involves a higher fidelity definition of the simple 

concept Littoral Combat Ship (LCS) scenario that was used in preliminary works.  Our goal would be to 

further enhance value added aspects of the proposed workbench by illustrating its benefits to SoS 

practitioners through example applications of the workbench in supporting SoS evolution of the LCS 

program, as a case study. More specifically, the demonstration, validation and verification would 

accomplish the following: 

: 

 Develop a high fidelity concept problem based on the LCS platform as a SoS problem. This 

involves an Agent-Based Model that acts as a simulation test bed for operational decisions. 

 Define metrics for the LCS problem in a SoS context and determine which metrics can be 

computed, and under which assumptions, for each candidate analysis method. 

 Demonstrate, within the structure of an analytical workbench, the application of researched 

methods in architecting and evolving the LCS SoS construct. This involves application of each 

method to representative architectural challenges that SoS practitioners may face in developing 

the LCS problem. 

 Validation and verification of efficacy of methods in the context of the extended SoS problem 

(e.g. LCS problem). 
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